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Abstract— In this paper, we present a simple and prac-
tical technique for real-time rendering of caustics from
reflective and refractive objects. Our algorithm, concep-
tually similar to shadow mapping, consists of two main
parts: creation of a caustic map texture, and utilization
of the map to render caustics onto non-shiny surfaces.
Our approach avoids performing any expensive geometric
tests, such as ray-object intersection, and involves no
pre-computation; both of which are common features
in previous work. The algorithm is well suited for the
standard rasterization pipeline and runs entirely on the
graphics hardware.

I. INTRODUCTION

CAUSTICS are complex patterns of shimmering
light that can be seen on surfaces in presence of

reflective or refractive objects, for example those formed
on the floor of a swimming pool in sunlight. Caustics
occur when light rays from a source, such as the sun,
get refracted, or reflected, and converge at a single point
on a non-shiny surface. This creates the non-uniform dis-
tribution of bright and dark areas. Caustics are a highly
desirable physical phenomenon in computer graphics due
to their immersive visual appeal. Some very attractive
results have been produced using off-line high quality
rendering systems; however, real-time caustics remain
open to more practical solutions. Deviating from the
conventional geometry-space paradigm, which involves
path tracing in a 3D scene, intersection testing, etc, we
explore an image-space approach to real-time rendering
of caustics. Our algorithm has the simplistic nature
of shadow mapping, yet produces impressive results
comparable to those created using off-line rendering. We
support fully dynamic geometry, lighting, and viewing
direction since there is no pre-computation involved.
Furthermore, our technique does not pose any restrictions
on rendering of other phenomena, such as shadows,
which is the case in some previous work [3]. Our
algorithm runs entirely on the graphics hardware with no
computation performed on the CPU. This is an important
criterion in certain applications, such as games, in which
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Fig. 1. Image rendered using the caustics mapping algorithm. This
result was obtained using double surface refraction (both for the
appearance of the bunny as well as for the caustics) at the rate of
31 fps.

the CPU is already extensively scheduled for various
tasks other than graphics.

The remainder of this paper is organized as follows:
a short survey of related work is presented in Section 2.
Our rendering algorithm is then explained in Section 3,
followed by Section 4 discussing results and limitations.
We conclude with a summary of the ideas presented in
the paper and provide directions for future research in
Section 5.

II. PREVIOUS WORK

Although caustics rendering, in general, has been
subjected to a fair amount of research, a practical real-
time caustics rendering does not exist for everyday
applications. In this section, we look at some of the
earlier work in offline caustics rendering and recent
attempts to achieve caustics at interactive frame-rates.
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Fig. 2. Photograph of caustics from a spherical glass paper weight
using a desk lamp to emulate directional spotlighting. The caustics
are formed on rough paper placed underneath the refractive object.

For a fair amount of computational cost, accurate and
extremely beautiful caustics can be produced. Introduc-
tory work using backward ray-tracing was proposed by
Arvo [1], which was then pursued and extended by a
number of researchers. In this method, light rays are
traced backwards from the light source into the scene
as opposed to conventional ray tracing in which the rays
emerge from the eye. Photon mapping, a more flexible
framework, was proposed by Jensen [9] which handles
caustics in a natural manner on arbitrary geometry and
can also support volumetric caustics in participating
media [10]. Variants and optimized versions of path
tracing algorithms have been presented which utilize
CPU clusters [4] and graphics hardware [12]; but the
computational cost in time and resources are limiting
factors in practical application of these techniques to
real-time systems. Wyman et al. [18] rendered caustics
at interactive frame-rates using a large shared-memory
machine by pre-computing local irradiance in a scene
and then sampling caustic information to render nearby
surfaces. Such pre-computation steps in algorithms re-
strict their functionality to domains for which the pre-
computation was performed and are unable to support
fully dynamic scenes. Our algorithm is also based on the
backward ray-tracing idea, however it does not require
any pre-computation.

Wand and Straβer [15] developed an interactive caus-
tics rendering technique by explicitly sampling points
on the caustics-forming object. The receiver geometry is
rendered by considering the caustic intensity contribution
from each of the sample points. The authors presented
results using specular caustics-forming objects, but re-

fractive caustics can also be achieved with this technique.
However, the explicit sampling hinders the scalability of
the algorithm since the amount of computation done is
directly proportional to the number of sample points used
in rendering caustics.

Perhaps the most prominent caustics are those formed
in the presence of water. Therefore, the problem of
rendering underwater caustics specifically has received
significant attention. In early work, Stam [13] pre-
computed underwater caustics textures and mapped them
onto objects in the scene. Although this technique is
extremely fast, the caustics produced are not correct
given the shape of the water surface and the receiver
geometry. Trendall and Stewart [14] showed refractive
caustics to demonstrate the use of graphics hardware for
performing general purpose computations. Their intent
was to perform numerical integration which they used
to calculate caustic intensities on a flat receiver surface.
Their method cannot support arbitrary receiver geometry
and also cannot be easily extended to handle shadows.

Beam tracing has been employed to produce more
physically accurate underwater optical effects, caustics
in particular [5], [16]. In this technique, a light beam
through a polygon of the water surface mesh is traced
to the surface of a receiver object, hence projecting the
polygon onto the receiver. The energy incident on the
water surface polygon is used to compute the caustic
intensity at the receiver, taking into account the areas
of the surface and projected polygons. The intensity
contributions from all the participating polygons are
accumulated for the final rendering.

Nishita and Nakamae [11] present a model based on
beam-tracing for rendering underwater caustics including
volumetric caustics. Their idea was implemented on
graphics hardware by Iwasaki et al. in [7]. In a more
recent publication Iwasaki et al. [8] adopt a volume
rendering technique in which a volume texture is con-
structed for receiver objects using a number of image
slices containing the projected caustic beams. The case
of warped volumes which can occur in beam tracing has
not been addressed in either of the above. Ernst et al.
[3] manage this scenario and also present a caustic in-
tensity interpolation scheme to reduce aliasing resulting
in smoother caustics. However, their algorithm is unable
to obtain shadows since it does not account for visibility.
In contrast, our algorithm is able to handle shadows and
in general does not impose any restrictions on rendering
other phenomenon.

III. R ENDERING CAUSTICS

Our rendering algorithm consists of two main phases:
(i) construction of a caustic map texture, and (ii) ap-
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plication of the caustics map to diffuse surfaces called
receivers. We will first give a brief explanation of how
caustics are formed, and then relate it to our method of
construction of the caustic-map.

A. Caustic formation

Caustics are formed when multiple rays of light con-
verge at a single point. This occurs in the presence
of refractive or reflective objects which cause the light
rays to deviate from their initial path of propagation
and converge at a common region. Therefore, to obtain
caustics accurately, one must trace light rays from their
source and follow their paths through refractive and off
reflective surfaces. The photons eventually get deposited
on nearby diffuse surfaces, called receivers, thus forming
caustics as seen Fig. 3. Our algorithm closely emulates
this physical behavior, and is capable of obtaining both
refractive and reflective caustics. For reflective caustics
we support a single specular bounce. In the case of
refractive caustics, in addition to single surface refrac-
tion, our method also supports double surface refraction
employing the image-space technique recently proposed
by Wyman [17]. The algorithm supports point and di-
rectional lighting. Area lights can be accommodated by
sampling a number of point lights.

B. Caustics Mapping Algorithm

Without loss of generality, we will describe render-
ing of caustics through refractive objects using our
algorithm. A general overview of the algorithm, which
closely resembles shadow mapping, is presented next
along with elaborative discussion on certain parts.

Following is a stepwise breakdown of the main caus-
tics mapping algorithm.

• Obtain 3D positions of the receiver geometry:
The receiver geometry is rendered to apositions
texturefrom the light’s view. 3D world coordinates
are outputted for each pixel instead of color. This
positions texture is used for ray-intersection estima-
tion in the next step.

• Create caustic-map texture:The caustic-map tex-
ture is created by splatting points onto the receiver
geometry from each vertex of the refractive object
along the refracted light direction. The intersection
point of the refracted ray and the receiver geometry
is estimated using the positions texture. This step is
explained in detail in the following section.

• Construct shadow map: Although optional, con-
ventional shadow mapping can easily be integrated
into the caustics mapping algorithm to render im-
ages with both caustics and shadows.

light rays

surface normals

refractive object

refracted raysracted rays

refractive object

diffuse "receiver" object

Fig. 3. Diagram showing how multiple light rays can refract
through an object and converge at the same point on a diffuse surface.

• Render final scene with caustics:The 3D scene
is rendered to the frame buffer from the camera’s
view. Each pixel of the receiver surface is projected
into the light’s view to compute texture coordinates
for indexing the caustic-map texture. The caustic
color from the texture is assigned to the pixel and
augmented with diffuse shading and shadowing.

The steps mentioned above are performed every frame
in separate render passes, and thus impose no constraints
on the dynamics of the scene. Furthermore, no compu-
tation is performed on the CPU; neither as a per-frame
operation nor as a pre-computation.

C. Creating the Caustic-Map

Rendering of the caustics map texture lies at the heart
of our algorithm. It consists of three main steps:

• Refraction of light at each vertex
• Estimation of the intersection point of the refracted

ray with the receiver geometry
• Estimation of caustic intensity at the intersection

point

The caustic-map texture is created by rendering the
caustics-forming object from the light’s view. The ver-
tices are displaced along the refracted light direction and
then splatted onto the receiver geometry by rendering
point primitives instead of triangles. The algorithm is
implemented in a vertex shader program and proceeds
as follows:
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for each vertex vdo
T = Refract( LightDirectionVector )
P = EstimateIntersection( v.position + normalize(T),

ReceiverGeometry )
v.position = P

return v

Notice that multiple vertices can end up at the same
position on the receiver geometry. In the pixel shader, the
light intensity contribution from each vertex is accumu-
lated using additive alpha blending. Details regarding the
intensity and final caustic color computation are given in
Sub-section 3 D.

The intersection point of the refracted ray with the
receiver geometry must be computed in order to output
the final position of the vertex being processed. Nor-
mally, this requires expensive ray-geometry intersection
testing which is not feasible for real-time applications.
We present a novel image-space algorithm for estimating
the intersection point which, to our knowledge, has not
been used before.

d'

r

P1

P2

v

normal

P1 projection final estimate

Fig. 4. Diagram of the intersection estimation algorithm. The
solid-lined arrows correspond to the position texture lookups.

The intersection estimation algorithm utilizes the po-
sitions texture rendered in the first pass of the main
caustics mapping algorithm. A schematic illustration of
the procedure is shown in figure 4. Letv be the position
of the current vertex and−→r the normalized refracted
light vector. Points along the refracted ray are thus
defined as:

P = v + d ∗
−→r (1)

where d is the distance from the vertexv. Estimating
the point of intersection amounts to estimating the value

of d, the distance betweenv and the receiver geometry
along −→r . An initial value of 1 is assigned tod and a
new position,P1, is computed:

P1 = v + 1 ∗
−→r (2)

P1 is then projected into the light’s view space and
used to look up the positions texture. The distance,d’,
betweenv and the looked up position is used as an
estimate value ford in Equation 1 to obtain a new point,
P2. Finally, P2 is projected in to the light’s view space
and the positions texture is looked up once more to
obtain the estimated intersection point.

The intersection estimation algorithm is essentially an
iterative process of which a single iteration has been
discussed above. For example, in the next iteration the
distance between the estimated intersection point in the
last iteration andv would be plugged into Equation 1 as a
new estimate value ford. We have found empirically that
the estimate of the intersection point improves with each
iteration as it tends to converge at the true intersection
point. The magnitude of the error and the number
of iterations to convergence depends on the topology
distribution of the scene. For a fairly uniform topology,
the error is negligible after only 5 iterations. For the
purpose of rendering caustics, we observed that only
a single iteration is sufficient. Furthermore, the small
error in the estimation is well sustained by our caustics
mapping algorithm and thus is suitable for the purpose.

D. Caustic Intensities

The intensity of the caustics formed on the diffuse
receiver geometry depends on the amount of light that
gets accumulated at any particular point on the receiver’s
surface. Since the caustics map texture is created by
refracting or reflecting the light rays at each vertex, the
intensity of the caustics will depend on the number of
vertices which make up the caustic-forming object. If
the algorithm is employed using a naive accumulation
scheme, the caustics will appear to be bright or dark
depending on the number of vertices of the object. This
undesirable phenomenon occurs due to the incorrect
assumption that the light flux contribution for each vertex
is the same. We combat this problem by computing
a weighting coefficient for each vertex which is then
multiplied with the incident light.

In order to compute the coefficient for a vertex, the
total flux contribution for that vertex must be determined
by observing the flux through the surrounding triangles
in the mesh of the caustic-forming object. For physically
accurate computation, the ratio of the projected area of
the triangles to the entire projected surface area of the
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object must be calculated. The flux through an individual
triangle can then be distributed equally amongst its
constituent vertices. Therefore, the total flux contribution
for each vertex in the mesh is computed as:

Φi =
∑

j∈Si

PA(∆j)

3

1

V
(3)

whereV is the total projected surface area of the object,
PA(∆j) is the projected area of trianglej, andSi is the
set of triangles that fan around vertexvi.

AlthoughΦi is the correct weighting coefficient for the
intensity of the caustics formed throughvi, calculating
Φi is not feasible for real-time applications due to the ex-
pensive projected area computation. In order to maintain
the practical nature of our algorithm, we approximate the
flux computation as:

Φ̃i =
∑

j∈Si

Area(∆j)

3

1

Ṽ
(4)

Ṽ =
1

2

∑

∀k

Area(∆k) (5)

whereArea(∆k) is the actual area of the trianglek. Ṽ is
an approximation ofV, and is computed as half of the
total surface area. Note that for non-closed 3D meshes,
such as a water surface mesh, the total surface area
is used forV. With this simplification, the coefficient
Φ̃i can be computed and stored as a vertex attribute in
the mesh data structure. Since the coefficients for the
vertices are fixed, we consider them to be part of the
3D mesh data structure and not a pre-computation step
in our algorithm. For animated meshes, the total surface
area and the area of the individual triangles are likely to
change during run-time. In such a case, the initial key-
frame configuration of the mesh is used to compute the
coefficients. This approximation is capable of handling
subtle deformations, such as those used in animating
water.

The final color of the caustics formed through a
refractive object is computed by taking into account
the absorption coefficient of the object’s material. This
enables us to achieve colored caustics.

I = Ioe
−Kad (6)

whereIo is the incident light intensity,Ka is the absorp-
tion coefficient, andd is the distance that light travels
through the refractive object. This distance is easily
determined by rasterizing the back-faces of the object
in an initial render pass to obtain positions of the hind
points. In fact, this data is already available if double
surface refraction is used [17].

Fig. 5. Caustic-map of a water ripple. Comparison between filtered
(left) and unfiltered (right) caustic-map texture is shown.

E. Implementation Issues

The caustics mapping algorithm suffers from issues
similar to shadow mapping and other image-space tech-
niques. There are two main points of concern which must
be addressed: aliasing, and view frustum limitation. The
former issue is inherent in all image-space algorithms.
This problem is further magnified due to the usage of
point primitives rather than triangles for rendering of
the caustic-map. The gaps between the point splats give
a non-continous appearance to the caustics. However, if
the 3D mesh of the caustics-forming object is tessellated
enough, the gaps are significantly reduced. Low pass
filtering of the caustic-map texture further smoothes the
caustics and improves their appearance.

The second issue pertaining to the algorithm is
the view frustum limitation during rasterization of the
caustic-map. This problem is exactly like that of shadow
mapping with point lights. In such a case an environment
shadow map is created, usually with six 2D textures
for each face of a cube map rather than a single tex-
ture. Similarly, in the caustics mapping algorithm if the
caustics are formed outside the light’s view frustum,
they will not be captured on the caustic-map texture.
This happens more frequently with reflective caustics

Fig. 6. Caustics rendered using our algorithm for simple objects
such us spheres (113fps) as well as complex ones such as the Stanford
bunny (101fps)
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Fig. 7. Frames from a water animation demo with caustics mapping. Random ”plops” are introduced in the water surface meshat regular
time intervals. Notice the caustics pattern and the corresponding shape of the water surface. The last image shows caustics on the Happy
Buddha to demonstrate that non-planar receiver geometry isalso supported.

than refractive ones. Using an environment caustic map
solves this problem at an overhead cost of rendering
extra textures. In our implementation we employed cube
maps, however the dual paraboloid mapping technique
proposed by Heidrich [6], which has been applied to
shadow mapping for omnidirectional light sources by
Brabec et al. [2], can also be utilized.

IV. RESULTS AND L IMITATIONS

The caustics mapping algorithm was developed and
implemented on a 2.4GHz Intel Xeon PC with 512MB of
physical memory. However, since the algorithm performs
no computation on the CPU, a lower-end processor will
be sufficient. We employed a GeForce 6800 graphics
card and pixel shader model 3.0 because the algorithm
requires texture access in the vertex shader for intersec-
tion estimation in the caustic-map generation step. The
algorithm was implemented using Microsoft DirectX 9.0
SDK.

The major advantage of our algorithm is the speed at
which it renders the caustics, making it very practical
for utilization in games and other real-time applica-
tions. We conducted a number of tests and produced
results to demonstrate the feature-set of our algorithm.
Caustics from both refractive and reflective objects were
generated. For refractive objects, two main categories
were established: single-surface refraction, and double-
surface refraction. Single-surface refraction is suitable
for underwater caustics since there is only a single
refraction event as light enters through the water surface
and hits the floor. The result of our underwater caustics
can be seen in Figure 7. It was rendered at a resolution
of 640x480 at the rate of 60 frames per second. The
mesh used for the water surface consisted of 100x100
vertices.

For solid refractive objects, using double-surface re-
fraction is more physically correct. Most of the previous
work done in real-time caustics rendering is limited to
single-surface refraction and cannot be easily extended
to include the double-surface interaction. Our algorithm
effortlessly accommodates Wyman’s [17] image-space
double-surface refraction. We rendered various simple
and complex objects and observed the caustics that they
produced. The results with caustics from a sphere, and
the Stanford bunny are shown in Figure 6. Notice that
the frame-rate even with double-surface refraction is
quite high. The shadows in these images were obtained
using conventional shadow mapping. Since we deal with
point lights, a shadow cube map was employed. The
resolution of both the shadow map and the caustics
map was 768x768x6 pixels for rendering final images
of resolution 1024x768 pixels.

Caustics from reflective objects using our method are
shown in Figure 8. Our caustics mapping algorithm
performs better with refractive caustics than reflective
ones since the error in the intersection estimation during
the caustic-map generation step tends to be greater in the
latter case. This is due to the fact that refraction causes
small deviations in the path of the light ray, whereas
reflection causes the ray to change its direction com-
pletely. We would like to improve upon our intersection
estimation algorithm in future work to better handle the
reflection case.

Another limitation of our algorithm is that it does not
easily extend to volumetric caustics like some techniques
proposed in previous work [3]. This is mainly due to
the fact that the caustic-mapping algorithm operates in
image-space. One way of achieving volumetric caustics
using our algorithm is to use a number of planes perpen-
dicular to the light ray as the caustic receivers. However
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this method spawns further issues relating to sampling
and volumetric rendering which need to be addressed.

Fig. 8. Reflective caustics from a brass ring. The desired
cardioid shape that is observed in real life is obtained fromthe
caustics-mapping algorithm.

V. CONCLUSION AND FUTURE WORK

We have presented a practical real-time caustics ren-
dering algorithm that runs entirely on the graphics
hardware and requires no pre-computation. It emulates
the light transport involved in caustics formation in the
image-space; therefore it is both physically inspired and
fast. The algorithm is conceptually similar to shadow
mapping and integrates easily into virtually any render-
ing system.

We also presented a fast ray-scene intersection esti-
mation technique which we plan to further explore and
improve in future work. This technique is extremely
fast and is well suited to algorithms, such as caustics
mapping, which can tolerate a certain amount of error in
the estimation.

The caustics mapping algorithm presents a number of
options worth pursuing for further enhancement. For ex-
ample, better techniques for filtering of the caustic-map
might considerably improve the overall appearance of the
caustics. Finally we would like to develop methods of
applying the caustics mapping algorithm to participating
media and achieve volumetric caustics.
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