Dual Paraboloid Mapping
In the Vertex Shader

By Jason Zink

I ntroduction

| had heard about ‘dual-paraboloid mapping’ sometago and always wanted to look into how
the algorithm worked. The name itself begs tonvestigated, and the paraboloid mapping
could be applied to environment maps as well ad@lianaps so it seemed like a good idea to
look into it.

When | recently found some spare time to read up ldiound several different academic papers
on the topic explaining the theory behind the athar. However, after several rounds with
Google | realized that there weren’t many good uieses on how to implement the mapping
scheme. So I decided that | would investigateapé and try to provide an easy to understand
guide to the theory as well as a reference tortiementation of paraboloid mapping in the
modern programmable rendering pipeline.

The implementation is written in DirectX 9 HLSL.h@& effect files that are developed in this
exercise are provided with the article and maygeun whatever manner you desire.

Algorithm History

Before diving into the algorithm, | want to poinitovhere the idea came from and why it was
developed. The original motivation behind paraliblfoapping was presented in the paper
“View-Independent Environment Maps” by Heidrich aelidel. This new parameterization was
intended to provide an alternative to spherical @talcal parameterizations used in environment

mapping.

Spherical mapping suffers from wildly non-uniforemspling rates across its surface, making it
difficult to use as a general-purpose environmeappmg strategy. On the other hand, cube
mapping provides a much more uniform sampling taié also requires six rendering passes to
generate a complete environment of the currentesc&his is quite an expensive algorithm to
implement in a real-time rendering scenario.

Paraboloid mapping provides a good balance betivese two methods. It produces a
representation of the current scene about a spajte with two surfaces, one for the forward
facing hemisphere and one for the backward facargisphere. Its sampling rate is also more
uniform than spherical mapping.

Another paper introduced the paraboloid parameteoz to shadow maps: “Shadow Mapping
for Hemispherical and Omnidirectional Light Sourdeyg Stefan Brabec. This paper provided
the framework for building shadow maps that cowder an entire half of a scene with a single
map or the entire scene with two maps. As opptssthndard cubical shadow mapping, the
paraboloid parameterization saves a significantuarnof work.

Algorithm Overview

So what exactly is paraboloid mapping? Firssl&ibk at the shape of a paraboloid to
understand how it works. Figure 1 shows a paratholo

Figure 1: Surfaceplot of a paraboloid
(image taken from Brabec)

The basic idea behind it is relatively simple. Bajiven point P in a 3D scene we can divide the
scene into two hemispheres, we’ll call them forwand backward. For each of these
hemispheres there exists a paraboloid surfaceMhldbcus any ray traveling toward point P

into the direction of that hemisphere. Here iParBage that shows this idea.

Figure2: Dual paraboloidsreflecting raysinto parallée directions
(image taken from Brabec)

Figure 2 shows both hemispheres reflecting ragsanparallel stream away from the point P.
This is the key to the paraboloid mapping — envimtent mapping encodes the light surrounding
a point into a grid of values to be stored in a wage shadow mapping does the same for depth
values.

This encoding is based on the incoming rays besflgated about the paraboloid surface’s
normal vector. As we will see in the MathematicBground section, this idea is the basis of the
implementation of paraboloid mapping.

M athematic Background

The mathematic definition of the paraboloid thatwik be working with is:
f(XxYy) :%—%(x2 +y?) for x?+y?<1

Look at Figure 1 to see how this equation is evalliat various values of x and y. This
equation is going to be used throughout this se¢b@rovide a mathematic basis for the
implementation that we will be doing later on.

The first task at hand is to be able to find thenmad vector at any point on the paraboloid
surface. We will use the relatively well-known imed of finding two vectors that are tangential
to the surface and taking their cross product talpce the normal vector. The two tangent
vectors are found by taking the partial derivatigéthe function with respectto x andy. So
here is the mathematic version:

P=(xy, f(xY))

With the normal vector now known for the entiregiasloid surface, we can solve for the x and
y coordinates of the intersection of an incomingaad the paraboloid surface. This result will

later be used to determine the x and y texturedinates for both generating and accessing the
paraboloid maps.

To find the intersection point on the paraboloi@, nvust have the direction of the incident ray as
well as the direction of the reflected ray. Sittoe paraboloid reflects all rays to the forward
direction for the forward hemisphere, then we kribevreflected direction — it is the same for all
reflections in that hemisphere! Examine figuré this is not clear to you, it is crucial to
understand. So the forward hemisphere’s reflectemtor is always going to be (0,0,1) and the
backward hemisphere’s reflection vector is alwayimg to be (0,0,-1).

Now that we have both the incident vector and #filected vector, we can calculate the normal
vector that caused the reflection. The sum ofrihglent and reflected vectors should have the
same direction as the normal vector, although withfferent magnitude (assuming the vectors
are the same length!). Again, in math form:

N, = V.

incident + Vreﬂected

Then from our earlier derivation of the normal wect
NP = (X! y’l) < Vincident +Vreﬂected :Vsum

This relationship shows that if we divide the résidlthe sum of the two vectors by their z
component, then the resulting x and y componemtsher x and y components of the paraboloid
surface that reflected the vector.

_i = ﬁ&
NP - 7 (Xsum’ysum,zsum) (Z ! 7 ’]'j

sum sum sum

The relationships that we have defined in thisisaatill allow us to implement the paraboloid
mapping in HLSL.

Generating Paraboloid Maps

Now that we have a better understanding of therimmekings of the paraboloid
parameterization, it is time to put our newly acgdiknowledge to use. First we will look at
how to generate a dual paraboloid environment raag,then we will look at how to access the
map for use in the various shaders that can benefit it. The sample effect files are written in
HLSL, but the implementation should apply to otbleading languages as well.

To begin, the application must calculate the tramsation matrices to be used in our rendering
pipeline. I will quickly discuss the three bagiartsforms usually used: the world, view, and
projection matrices.

The world matrix remains the same as with standamdering — it just positions the object in
world space and is generated in the normal fashion.

The view matrix is generated in the normal faskaerwell, but the ‘camera’ that will be used to
create it from is really the point P. So to creagview matrix, the world space position of P
will be used as the translation part, and an apfatgorientation has to be selected to provide
the rotation part. The orientation that is uselll dgtermine what will end up being the forward
and backward directions for the two paraboloids.

The projection matrix is actually not needed toegate the paraboloid map. The input geometry
will be transformed into camera space and its rswvill be directly manipulated in the vertex
shader. In this example the projection matrixingpdy set to the identity matrix.

Once all three matrices have been calculated, eveeady to start rendering our geometry. The
majority of the work in producing a paraboloid magone in the vertex shader. You can think
of the overall algorithm that we are trying to iraplent as requiring us to place each vertex into
a location in the paraboloid map that can latelob&ed up according to the mathematic rules
that we defined earlier.

The first operation needed is to transform the mmicg vertices with the combined world, view,
and projection matrix object space to post propecipace and divide by the w coordinate to
produce a homogenous position in camera space.

QUT. posi tion
QUT. posi tion

mul (float4(IN. position, 1), mAP);
QUT. position / QUT.position.w

To find the x and y coordinates of the map thasheuld store this vertex at, we will need to
have a vector from the point P to the transformedex. In the paraboloid basis (set by the view
matrix earlier) point P is actually located at (0)Gso finding a vector from P to the vertex is as
simple as dividing P by the length of the vectonir(0,0,0) to P.

float L
QUT. posi tion

 engt h(OUT. position.xyz);
QUT. position / L;

The resulting vector represents a ray from theexeidward point P. Now we must find the x
and y coordinates of the point where this ray seets the paraboloid surface. From the earlier
findings, the normal vector at any point on theapafoid surface can be found by adding the
incident and reflected vectors, and then dividimaf result by its z component. We know that
the reflected vector is always (0,0,1) due to ttaperties of the paraboloid (sEegure2). So to
compute the normal vector, we only have to addthéaz component and then divide the x and
y components by this new z value.

QUT. position. z
QUT. posi tion. x
QUT. posi tion.y

QUT. position.z + 1;
QUT. position.x / QUT. position.z;
QUT. position.y / QUT.position. z;

This x and y coordinates represent the positiorteeroutput texture that this vertex maps to in
the paraboloid parameterization. To have proppthdiesting, | have set the z coordinate back
to the distance from P to the vertex in world spszaded by the viewing distance. In addition,
the w component is set to 1 to finalize the x,nd a values output by the vertex shader.

QUT. position. z
QUT. posi tion.w

= (L - 0.1)/(500.0-0.1);

=]_;

The only change necessary between rendering therfrap and the back map is to multiply the
z coordinate by —1 before dividing by the distatocthe vertex. Also, back face culling is
disabled in the sample file so that the same etfactbe used on both maps (by negating z the
triangle winding would be reversed). This coulsioabe done with two different techniques, but
| thought it would be simpler this way.

To see a complete listing of the vertex shaderwlahave built over the last few paragraphs as
used in generating a two texture terrain, see tbeiged effect filedual _paraboloid terrain.fx
Here are some sample paraboloid maps generatedafiiberragen terrain file:

Figure 3: Sample Front and Back Paraboloid M aps

Figure 4: Wireframe Views of Sample Front and Back Paraboloid M aps

Accessing Paraboloid Maps

Now that we have generated the paraboloid map,eed to be able to access it to put it to good
use. How the data is accessed depends on whatrgaising the maps for, but the general idea
applies to any paraboloid map access. The pradesdculating the texture coordinates to
access the paraboloid maps is quite similar tortethod used to generate the map.

As an overview of the algorithm, we will follow tbe steps:

1) Find a vector from P to the desired object

2) Use this vector to calculate u and v coordiné&teg set for each hemisphere)
3) Sample both paraboloid maps with the coordinates

4) Do something with the sampled values

In the case of environment mapping, the vector fRoto the desired object is a vector from the
camera to the point on the environment-mapped ghjduch is then reflected about that point’s
normal vector. So the camera sees what is reflexffeof the environment-mapped object. So
the first step is to generate the reflected vector:

float3 N = nornmalize(IN normal);
float3 E = nornalize(IN eye);

float3 R=reflect(E, N);

This reflected vector is now in world space. Ihéessary to transform this vector into the
paraboloid map’s basis. This is essentially donmbltiplying by the view transform from the
generation phase:

R =ml(R (float3x3)Parabol oi dBasis);

With the reflected vector now available, the tegtooordinates are calculated in the same way as
when generating the paraboloid map. The resultaiges are then scaled and biased to account
for the texture addressing modes of Direct3D:

float2 front;
front.x = (Rx/ (2*(1 + Rz))) + 0.5;
front.y = 1-((Ry / (2*(1 + Rz))) + 0.5);

fl oat2 back;

back. x (Rx /1 (2*(1 - Rz))) + 0.5;
back.y 1-((Ry [/ (2*(1 - Rz))) + 0.5);

These coordinates are then used to sample theavabg@oid maps:

float4 forward = tex2D(FrontSanpler, front);
float4 backward = tex2D(BackSanpl er, back);

| chose to use border texture addressing with eklidalor outside of the texture so that | could
simply take the max of the two sampled values tdlgeenvironment color at that point. This is
shown here:

QUT. col or = max(forward, backward);

The resulting color should be the reflected enviment color at that point. Here is a screen shot
from rendering a poorly tessellated sphere usiegithal paraboloid environment map:

Figure5: Dual Paraboloid Environment Mapped Sphere

For a complete effect file that implements thislgqaaaboloid environment mapped effect, see
the included filedual paraboloid_environment_map.fx

Conclusion

Now that we understand how paraboloid mapping wdets consider some of the down sides
associated with it. Paraboloid mapping is notgurf If you examine the wire frame views in
Figure 4, you will see that the triangle edgessaitestraight lines. This is because we apply the
paraboloid warping to the vertices of a model whenerating the map. The triangle is still
rasterized in the same manner — a line segmentJaestax to vertex in clip space forms each
edge. At first this does not seem to be that by deal.

However, if you look closely at Figure 5 you widlesa couple of areas where artifacts are
introduced into the reflected image. This is theaavhere the front and back maps meet.
Around the edges of the paraboloid map shown inrei@, there are small areas that appear to
be cut into straight lines. This is caused bystene not being tessellated highly enough to
counteract the rasterization effects we just dbedti Even so, the paraboloid parameterization
is still a useful tool to have at your disposalhé&M used properly it is capable of providing a

significant performance increase as opposed to mdpping, and a quality increase as opposed
to spherical mapping.

| decided to write this article due to the lackraplementation details available on the web.
Hopefully this guide has provided you with someaghsinto the world of paraboloid mapping.

If you feel that this document could be improvedave questions or comments on it please feel
free to contact me as ‘Jason Z' at gamedev.net.

