IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. X, XXX/XXX 2010 1

Interactive Indirect lllumination Using
Adaptive Multiresolution Splatting

Greg Nichols and Chris Wyman, Member, IEEE

Abstract—Global illumination provides a visual richness not achievable with the direct illumination models used by most interactive
applications. To generate global effects, numerous approximations attempt to reduce global illumination costs to levels feasible in
interactive contexts. One such approximation, reflective shadow maps, samples a shadow map to identify secondary light sources
whose contributions are splatted into eye space. This splatting introduces significant overdraw that is usually reduced by artificially
shrinking each splat’s radius of influence. This paper introduces a new multiresolution approach for interactively splatting indirect
illumination. Instead of reducing GPU fill rate by reducing splat size, we reduce fill rate by rendering splats into a multiresolution buffer.
This takes advantage of the low-frequency nature of diffuse and glossy indirect lighting, allowing rendering of indirect contributions at
low resolution where lighting changes slowly and at high-resolution near discontinuities. Because this multiresolution rendering occurs
on a per-splat basis, we can significantly reduce fill rate without arbitrarily clipping splat contributions below a given threshold—those

regions simply are rendered at a coarse resolution.

Index Terms—Giobal illumination, interactive rendering, reflective shadow maps, multiresolution splatting.

1 INTRODUCTION

INDIRECT illumination represents light reaching a surface
after previously interacting with other surfaces. While
this lighting adds tremendously to visual richness and
scene realism, the costs to track multibounce light reflec-
tions often prove prohibitive. Because of this, interactive
applications frequently forgo complex global illumination
entirely or use approximation techniques such as ambient
occlusion [1], light maps, or precomputed radiance trans-
port [2]. Unfortunately, these techniques impose limits of
their own, often ignoring color bleeding or restricting the
motion of geometry, lights, or viewer.

However, physically accurate global illumination may be
unnecessary in most contexts. Tabellion and Lamorlette [3]
found that even in visually demanding applications, such as
feature films, single bounce indirect illumination provides
plausible lighting. Accepting this limitation avoids tracing
complex light paths that add little to a scene and dramatically
simplifies the rendering equation.

One single bounce approach uses an augmented shadow
map, called a reflective shadow map (RSM), to either gather
during a final deferred render pass [4] or scatter indirect
illumination via splatting [5]. Both techniques build on the
idea of instant radiosity [6], where pixels in the shadow
map represent virtual point lights (VPLs) used as secondary
light sources for computing indirect lighting. This approach
effectively reformulates the rendering equation from a
complex integral over surfaces to a sum over all texels in

o The authors are with the University of lowa, 14 MacLean Hall, lowa City,
IA 52242-1419. E-mail: {gbnichol, cwyman}@cs.uiowa.edu.

Manuscript received 25 Feb. 2009; revised 19 May 2009; accepted 11 Aug.
2009; published online 18 Aug. 2009.

Recommended for acceptance by M. McGuire and E. Haines.

For information on obtaining reprints of this article, please send e-mail to:
tocg@computer.org, and reference IEEECS Log Number
TVCGSI-2009-02-0044.

Digital Object Identifier no. 10.1109/TVCG.2009.97.

1077-2626/10/$26.00 © 2010 IEEE

the shadow map. The key to achieving performance then
lies in reducing the costs of this summation.

This paper proposes a novel multiresolution splatting
technique that reduces costs for RSM-based indirect illumi-
nation. Previous techniques either gathered light from a
subset of the virtual point lights or splatted light into limited
regions. Our approach instead recognizes that each virtual
light potentially affects the whole scene, but due to the low-
frequency nature of indirect illumination many pixels
receive radiance quite similar to their neighbors and can be
processed as a group. This idea is similar to hierarchical
radiosity approaches [7], but instead works in image space.
We divide the image into regions with similar indirect
illumination, which we call subsplats. When indirect light
from VPLs is splatted into our multiresolution buffer, each
subsplat is rendered as a single fragment into an appropriate
layer of the buffer. Effectively, we use a piecewise-constant
illumination approximation inside subsplats and reduce fill
rate by rendering subsplats at varying resolutions (rather
than always splatting into an image-resolution buffer). The
buffer layers are upsampled and additively blended, and a
new interpolation technique removes discretization artifacts
from the final indirect illumination.

Our most general formulation defines different subsplats
(i.e., regions of near-constant indirect illumination) for each
virtual point light, allowing the rendering of arbitrary
BRDFs. Recomputing subsplats for each VPL quickly
becomes the bottleneck, so we propose an alternative
approach using the same set of subsplats for an entire
frame. This significantly improves performance, though
only diffuse materials are properly handled.

Like other RSM approaches our technique does not
consider visibility, and therefore does not converge to
correct single bounce indirect illumination. In spite of this
limitation, our method yields plausible results at reasonable
framerates. In many applications, the lack of strict physical
accuracy is an acceptable compromise.

Published by the IEEE Computer Society

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. X, XXX/XXX 2010

(@)

(©

Fig. 1. (a) Direct light only; (b) indirect light generated with our method; (c) the combined image. This scene is generated at 29 fps with fully dynamic

lighting, geometry, and camera.

2 PRevious WORK

Widespread illumination research has enabled numerous
techniques for interactive complex lighting. Generally, the
simplest approaches add global effects by precomputing
lighting, for instance, using radiosity [8], and baking in the
results to surface textures. Clearly this precludes dynamic
lighting and significant scene modifications, but quality
depends on precomputation time and runtime evaluation
is cheap.

Ambient occlusion [1] approximates indirect illumina-
tion by darkening direct lighting based upon occlusion from
neighboring geometry. Although this produces only a
coarse approximation, it cheaply reproduces effects such
as darkened corners that often arise from indirect lighting.
Precomputed ambient occlusion provides a cheaper alter-
native to complex radiosity solutions, but maintains the
assumption of static geometry. Bunnell [9] describes an
iterative ambient occlusion approximation for simple
dynamic models. Other techniques [10], [11] precompute
occlusion “fields” for rigid objects, allowing these objects to
move while occluding nearby geometry.

Another class of techniques precomputes light transport
and combines it with dynamic illumination at runtime using
a simple dot product. Using a spherical harmonic basis to
store the precomputed transport, Sloan et al. [2] allow
rendering of low-frequency lighting on static geometry. This
works best with environmental lighting, though further
work [12] also allows local lights. Transport fields [13], [14]
extend this approach to allow scenes with a few rigid,
dynamic objects. Related techniques [15], [16] allow simple
deformable models, but without indirect illumination.

Instant radiosity [6] introduces the concept of VPLs,
which are emitted from scene illuminants using a quasiran-
dom walk. Multiple hardware rendering passes use each
VPL in turn as a point light, accumulating lighting and
using shadow maps to account for indirect visibility. This
technique directly demonstrates the cost of visibility queries
in global illumination—each object is rasterized once for
each virtual light. Laine et al. [17] reduce visibility costs for
instant radiosity by reusing shadow maps between some
VPLs. Ritschel et al. [18] precompute coherent shadow
maps, allowing for faster visibility queries on rigid objects;
later work [19] simultaneously samples visibility from 1,024
lights, producing an approximation that is imperfect, but
sufficient for most indirect illumination.

Dachsbacher et al. [20] and Dong et al. [21] explore
techniques that avoid explicitly computing visibility.

2.1 Reflective Shadow Maps

Rather than computing or approximating visibility, reflec-
tive shadow maps [4] entirely ignore visibility for indirect
rays, assuming that viewers will not notice incorrect
visibility for secondary illumination. Reflective shadow
maps build on the idea of instant radiosity, using shadow
mapping hardware to generate virtual lights directly instead
of using quasirandom path tracing. The map itself consists
of a standard shadow map augmented by additional buffers
to store surface normals, positions, and reflected flux (see
Fig. 3)—essentially a light-space G-buffer [22].

The original method [4] uses a gathering approach to
sample nearby locations in the reflective shadow map for
each pixel in the final image (see Fig. 2); eye-space interpola-
tion reduces illumination artifacts due to low sampling rates
inboth eyeand lightspace. Later work reformulates reflective
shadow mapping using a shooting algorithm [5], splatting
each VPL'’s contribution onto a nearby region in eye space.
This technique extends to render glossy materials and simple
caustics by elongating the splat size based upon the material’s
BRDF, and importance sampling the shadow map allows
selection of a good set of VPLs based upon flux distribution.

One of the problems with splatting illumination from
VPLs is excessive overdraw. In theory, each VPL can affect
final illumination everywhere in the scene; using 1,000 point
lights requires computing contributions for 1,000 splats at
each eye-space pixel. Dachsbacher and Stamminger [5]
reduce overdraw by restricting splat sizes. Beyond a certain
distance from each VPL, indirect contributions are ignored.
This gives an ideal parameter for tuning performance, but
darkens illumination significantly as splat sizes shrink.

2.2 Min-Max Mipmaps

Our technique makes use of the min-max mipmap, which is
similar to a subdivided quad-tree [23]. Each layer in such a
mipmap stores both the maximum and the minimum
(instead of the average) of all corresponding texels from
finer resolutions in the map. Sampling any texel of a min-
max mipmap gives the largest and smallest values in that
texel’s image-space region. Recent uses of min-max mip-
maps include the rendering of soft shadows [24], geometry
intersection [25], and dynamic height field rendering [26].

2.3 Splatting and Multiresolution Approaches

Interactive techniques often rely on splatting, as gathering
frequently proves less amenable to GPU acceleration.
Gautron et al. [27] approximate global illumination using

NICHOLS AND WYMAN: INTERACTIVE INDIRECT ILLUMINATION USING ADAPTIVE MULTIRESOLUTION SPLATTING 3

Eye View

Eye View Eye View

Fig. 2. (a) Reflective shadow maps sum contributions from nearby virtual point lights v; for each pixel = in image space. (b) Reformulating this
process as a splatting algorithm (center) processes each VPL just once, but splats s; frequently have limited area of effect in order to reduce
overdraw. (c) While every VPL v; potentially illuminates any pixel in eye space, many regions (such as patches p;, ps, and p3) have relatively
constant contributions from these lights. We propose computing illumination contributions for each patch p; just once, by rendering a pixel-sized
subsplat into an appropriate layer of our multiresolution illumination buffer. For each v; we draw a subsplat for p; into a coarse buffer, a subsplat for
p1 into a finer level, and a subsplat for p, into an even higher resolution buffer.

a splat-based renderer with a radiance cache. Shanmugam
and Arikan [28] use billboards as splats to compute
ambient occlusion on surfaces within the splat’s influence.
Sloan et al. [29] use splats to accumulate indirect illumina-
tion from spherical proxy geometry. Caustic mapping [30]
frequently uses splats to represent photon energy, varying
splat size to account for divergent photons and reduce
sampling noise [31].

Even offline illumination rendering has investigated
splatting as an alternative to gathering techniques, allowing
more accurate illumination on high-frequency geometry
and the removal of low-frequency noise [32].

However, most interactive splat-based illumination
algorithms simply assume splats must be rendered at full
resolution, or clamp splats to a “reasonable” size to
maintain performance. Point-based rendering [33] and
volume rendering [34] use multiresolution splatting to
achieve interactive speeds. Lehtinen et al. [35] use an
adaptive hierarchical point sampling method to induce a
basis function for PRT, which is rendered using GPU-based

(a) (b)

a

(c) (d)

Fig. 3. Components of a reflective shadow map: (a) a linear distance
from the eye, (b) a surface normal, (c) a world-space fragment position,
and (d) a reflected flux.

splatting. Offline rendering techniques frequently use
multiresolution and hierarchical techniques to reduce
computational costs (e.g., hierarchical radiosity [7]).

We draw inspiration from recent caustic work [36] that
renders illumination from splats into a multiresolution
image. This allows capturing illumination from very large
splats into coarse buffers and fine illumination details in high-
resolution buffers while maintaining small splat sizes,
dramatically reducing the overhead introduced by overdraw.

Finally, many of the ideas described in this paper were
introduced in an earlier work [37]. This paper extends our
earlier work by exploring alternative thresholding techni-
ques for controlling rendering quality and detecting image-
space lighting discontinuities. We discuss applicability to
not only diffuse surfaces but also more general nondiffuse
BRDFs. We also provide a more in-depth exploration of the
effect various parameters have on visual quality and
performance and further discussion of possible artifacts
and how to avoid them.

3 ALGORITHM

Like Dachsbacher and Stamminger’s algorithm [5] and
other splatting approaches, we splat illumination from each
virtual point light onto the scene. Naive splatting ap-
proaches render one splat for each VPL into a single
resolution buffer. Choosing the optimal resolution for this
buffer is nontrivial. Indirect lighting from a point light
generally changes quite smoothly as the 1/r? falloff
gradually goes to zero; even a coarse buffer often suffices
to capture this slowly changing illumination. Because splats
are rendered in eye space, however, high-frequency normal
variations and depth discontinuities can introduce rapid
changes into the illumination that cannot be adequately
captured with a coarse buffer. While this problem can be
eliminated by simply rendering the splats at a higher
resolution, doing so imposes much higher fill rate require-
ments and thus negatively impacts performance.

Instead of splatting into a single-resolution buffer, we
propose a multiresolution approach. We begin with a full-
screen quad for each VPL. This quad is divided into a set of
primitives called subsplats: each subsplat covers just a single

ol - I 4
(b)- — —

LII
L]

full-resolution rendering 1

I
N}
T
multi-resolution subsplats fixed-resolution subsplats

Fig. 4. A full-screen quad divided into single-texel subsplats, each of
which are then adaptively refined twice. Here, (a) the first subsplat
remains at its current resolution after each refinement pass. (b) The
second subsplat is refined to a higher resolution. Three of the resulting
subsplats are further refined, while the fourth remains at its current
resolution. Summation of the multiresolution subsplats (lower right) and
for comparison, a fixed-resolution summation where all subsplats are
refined to the highest resolution. Multiresolution refinement allows
comparable quality with many fewer subsplats.

texel at some resolution, though its image-space area may
contain up to several thousand pixels. The initial set of
subsplats is produced at very low resolution: 16% or even 8%
We then adaptively refine the subsplats, subdividing those
that are too coarse. After repeated refinements, the final set of
subsplats is rendered, with some subsplats output to a 16?
buffer, some refined and output to a 322 or 64° buffer, and
some refined all the way to the final output image. The
“splat” is the summation of this set of multiresolution
subsplats. Fig. 4 illustrates this concept, depicting the results
as two different subsplats are refined twice.

This idea has roots in various previous techniques. It
could be seen as a variant of hierarchical radiosity [7], where
patches are chosen based upon image-space rather than
object-space constraints. Radiance caching [27] typically
focuses illumination samples near edges, and Tole et al. [38]
rely on image-space criteria to better select cache samples for
an interactive render. Mitchell [39] describes a method of
reconstructing an image from nonuniform samples.

Ultimately, our algorithm simply allows splatting-based
techniques to reduce fill rate costs by avoiding redundant
computations, grouping them, and rendering to the coarsest
buffer allowable for each group. In our algorithm each
subsplat covers a single texel, though that texel might lie in
a low-resolution buffer and thus affect hundreds of pixels in
the final image.

The rest of this section describes, in greater detail, the
steps of our algorithm. A quick breakdown follows:

Compute reflective shadow map and direct light;

Select VPLs used to splat indirect illumination;

Generate mipmap to detect discontinuities;

Create and iteratively refine the list of subsplats;

Render to multiresolution illumination buffer;

Upscale and combine buffer for total indirect light;
7. Add direct and indirect light for final result.

Steps 1 and 2 are described in Section 3.1, steps 3-5 are

described in Sections 3.2-3.4, and steps 6 and 7 are

described in Section 3.5.

AN e

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. X, XXX/XXX 2010

3.1 Reflective Shadow Map and VPLs

We begin by generating a reflective shadow map [5] by
rendering from the light, storing world-space position,
distance from the light, surface normal, and reflected flux
for each texel (e.g., Fig. 3). Next, we render from the eye,
computing only direct light with shadow mapping. During
this step, we also generate a G-buffer [22] containing data
needed for deferred shading (i.e., world-space position,
normal, and distance from the eye).

We then sample the reflective shadow map to create
VPLs. In our implementation, we always use the same fixed
grid of RSM sampling locations to create VPLs, without
regard to the content of the RSM. A flux-based importance
sampling or quasirandom sampling may ultimately give
better quality.

3.2 Min-Max Mipmap Creation

To correctly refine subsplats, we need to identify image-
space discontinuities. To do this we use a min-max mipmap,
where each element stores maximum and minimum values
rather than the average values in a standard mipmap. To
best detect depth and normal discontinuities, we investi-
gated several different types of min-max mipmaps, de-
scribed in the following sections.

3.2.1 Min-Max Mipmaps for Depth Discontinuities

We begin by describing the construction of a conventional
min-max mipmap using linear depth values. We start with
the full-resolution linear depth buffer (computed in
Section 3.1) and run the mipmap generation process. We
halve the resolution at each step, computing for each
output element the maximum and minimum values of the
four input elements. When completed, sampling a texel
within the min-max mipmap gives us the minimum and
maximum depth values in that texel’s image-space area.
This allows efficient detection of depth discontinuities: if
the difference between these values is greater than a
threshold, then we consider a depth discontinuity to exist
within that texel’s region.

This method conservatively detects discontinuities, caus-
ing excess subsplat subdivision when a surface is viewed at
a steep angle. In this case, depth differences along smooth
surfaces viewed obliquely will be incorrectly treated as
discontinuities. To address this, we investigated the use of a
depth derivative to detect discontinuities. We compute a
screen-space depth derivative, calculating

V(dz/dw)’ + (dz/ dy)’

for each texel at the highest resolution. When computing
each lower resolution mipmap texel, we select only the
largest of the four input texels, generating a max-mipmap
rather than a min-max mipmap. When refining subsplats,
an area contains a discontinuity if the depth derivative for
that region is greater than a threshold.

3.2.2 Min-Max Mipmaps for Normal Discontinuities

Detecting surface normal discontinuities using a min-max
mipmap is less straightforward. As the goal is to detect
significant differences in surface normal orientation, we
note that surface normals with significantly different

NICHOLS AND WYMAN: INTERACTIVE INDIRECT ILLUMINATION USING ADAPTIVE MULTIRESOLUTION SPLATTING 5

orientations vary significantly in at least one component.
Therefore, we generate three sets of min-max mipmaps, one
for each component of the unit surface normal. If the
difference between the max and min values of any of the
normal components exceeds a threshold, we consider it a
normal discontinuity. In practice, this method works well
for detecting sharp surface features.

Because we generate three separate min-max mipmaps,
this approach consumes excess memory. As an alternative,
we experimented with detecting surface normal disconti-
nuities based on variations in surface curvature. Given the
normals N; and N of two neighboring texels, the curvature
k of the surface between them can be estimated by [40]

K =2%sin {W} . (1)

Similar to the depth derivative, we compute surface
curvature for each pair of neighboring texels at the highest-
resolution mipmap level, and choose the largest input at
each additional step. When detecting discontinuities, we
sample the min-max mipmap and compare the largest
curvature value to a threshold to determine whether a
significant change exists in the surface within that texel.

3.3 Refining the List of Subsplats

We begin with a very coarse set of subsplats at the coarsest
resolution in our illumination buffer, the multiresolution
image used to accumulate our indirect illumination. This
coarse set is rarely sufficient to represent indirect illumina-
tion for the entire image at a reasonable level of quality. To
generate an adequate set of subsplats, many of them must
be refined to higher resolutions. In our implementation, we
use a 162 buffer for the coarsest resolution; we therefore
start with 256 subsplats.

During each refinement step, each subsplat can either be
rendered as a point at a coarse resolution or refined into
four new subsplats corresponding to the next layer in the
illumination buffer. Since these subdivided subsplats each
represent a fragment in a higher resolution layer, each
refinement quadruples the required fill rate. Thus, the key
to performance is determining when to refine a subsplat
and when a coarser one suffices.

In general indirect illumination changes slowly, based
upon a distance-squared falloff from the light and cosine
falloffs dependent on surface patch orientation. In simple
scenes, coarse sampling and bilinear interpolation give
plausible lighting. However, complex models create depth
discontinuities along silhouettes and normal discontinuities
along creases that introduce rapid changes to the indirect
illumination seen by a viewer.

We detect these discontinuities by sampling the min-max
mipmaps. Sampling these mipmaps at the subsplat’s resolu-
tion allows us to detect significant depth or normal variations
within the subsplat. If the difference between the max and
min depth values exceeds a threshold, or the difference in any
of the normal components exceed a similar threshold, then
we consider a discontinuity to exist within that subsplat.

If a discontinuity exists, we subdivide the subsplat into
four higher resolution subsplats (see Fig. 5). During each
pass, we iteratively refine the subsplats, subdividing some
and not others:

Initial set at resolution 16 Refined to 32°

Refined to 256 Final, combined set at 1024?

Fig. 5. Subsplat refinement occurs in areas with depth or normal
discontinuities. In this case, we demonstrate how an initial set of
subsplats at 16> might be refined four times. For clarity, the set of
unrefined subsplats at each step is displayed in gray scale. The
combined result at 1,0242, after six refinement passes (lower right).

SubsplatList inputList;
SubsplatList outputList;

for all (subsplats s € inputList) do
if (ContainsDepthDiscontinuity(s) or
ContainsNormalDiscontinuity(s)) then

outputList. Add(s.TopLeftChild());
outputList. Add(s.TopRightChild());
outputList. Add(s.BottomRightChild());
outputList. Add(s.BottomLeftChild());

else
outputList. Add(s);

Each refinement pass doubles the resolution of the
indirect illumination. If the resulting set of subsplats has
reached the desired resolution, they can be rendered.
Otherwise, the set of subsplats is used as the input to a
subsequent pass.

3.3.1 Refinement for Arbitrary BRDFs

Complex lighting models often give rise to regions of
focused light, which must be rendered at high resolution to
be properly reproduced. Refinement based solely on depth
and surface normal discontinuities is insufficient in these
cases: if a highlight occurs on a surface without disconti-
nuities, the refinement of that surface will likely be too
coarse to adequately reproduce them.

To address this, we explored a variation of our method
that uses discontinuities in illumination, rather than depth or
surface normal, to guide the refinement process. When

6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. X, XXX/XXX 2010

evaluating whether to subdivide a subsplat, we compute
the indirect illumination in each of the subsplat’s quadrants
and compare the results. We refine the subsplat if any of the
samples differ significantly:

SubsplatList inputList;
SubsplatList outputList;

for all (subsplats s € inputList) do

l; = IlluminationAtPoint(s.TopLeft())

l, = IMuminationAtPoint(s.TopRight())

13 = IlluminationAtPoint(s.BottomRight())
1, = HluminationAtPoint(s.BottomLeft())

if (SamplesDiffer(1y,12,13,14))) then
outputList. Add(s.TopLeftChildPoint());
outputList. Add(s.TopRightChildPoint());
outputList. Add(s.BottomRightChildPoint());
outputList. Add(s.BottomLeftChildPoint());
else
outputList. Add(s);

Many ways exist to detect a “significant difference” in
illumination samples. In our implementation, we achieve
reasonable results by computing the maximum and mini-
mum values of each component of the inputs, and
comparing their differences to a threshold T:

boolean SamplesDiffer(13,15,15,14)

// component-wise max/min of the input samples
maxValues = max(max(max(13,12), 13,14);
minValues = min(min(min(1,12), 13,14);

if ((maxValues.r - minValues.r) > T or
(maxValues.g - minValues.g) > T or
(maxValues.b - minValues.b) > T) then
return true;
else
return false;

Because this style of refinement depends on point samples
to detect illumination discontinuities, very sharp highlights
may go undetected, and areas that contain them may not be
sufficiently refined. Thus, this method may not yield
sufficient quality using BRDFs that often exhibit high-
frequency illumination detail (i.e., mirror-like BRDFs). For
many BRDFs, though, refining subsplats in this manner
effectively captures illumination behavior, allowing the
plausible reproduction of lighting features and enabling our
method to be used with complex materials (such as the Phong
material shown in Fig. 6). The performance implications of
this variation of our method are explored in Section 4.2.

3.4 Rendering Indirect lllumination

After iterative refinement, we have a large list of
subsplats. Our implementation requires a three-tuple to
store each subsplat, with one value specifying the
subsplat’s output resolution, and two values specifying
its screen-space location.

During rendering, a vertex shader positions each sub-
splat in the correct layer of the illumination buffer, a

(b) (©)

Fig. 6. Indirect lighting from a Buddha with a Phong BRDF; here,
subsplats are refined separately for each VPL. To emphasize the
contribution, a blue tint was added to indirect light reflected by the
Buddha. (a) Direct lighting, (b) indirect lighting, and (c) combined result.
Indirect illumination rendered at 256> at 23 fps.

fragment shader computes indirect illumination for each
subsplat, and additive blending accumulates all contribu-
tions. For each subsplat, our indirect illumination is

- —

7 7 Vw N ‘7) N
I(zg, 1) = pi(L, Vie)ps(Via, E)@w

W|‘59‘2

o (2)

where z, and x; are the shaded point and the virtual light
point,]\75 and]\71 are the surface normals at z, and z;, ®, is the
flux to the VPL at z;, p; and p; are the BRDFs at z; and x;, Lis
the vector from z; to the light, E is the vector from z, to the
eye, and V}S and V_f;; are, respectively, the vectors from z; to z;
and from z, to z;. These values are retrieved from the
appropriate location either in the RSM or the G-buffer. Here,
(A, B) = max(4 - B,0).

After rendering all subsplats, the illumination buffer
contains all indirect illumination split into disjoint compo-
nents at various resolutions. Naively summing the layer
contributions gives a blocky representation of total indirect
light (see Fig. 7) that requires interpolation.

3.5 Upsampling and Combination

Fig. 7 demonstrates the artifacts from naive methods of
combining multiresolution illumination: blocky illumina-
tion when using nearest neighbor upsampling, and strange
multiresolution haloing and ringing when using bilinear
interpolation. Clearly, neither is acceptable.

The problem lies in the complex structure of the
illumination buffer. Each texel contains either all of the
illumination for that eye-space location, or none at all.
Linear interpolation between a texel containing all of its
relevant light and one containing no illumination makes
little sense, as it spreads energy from texels containing
energy to those deemed too coarse or too fine. Given that
roles may be reversed at other levels in the illumination
buffer, multiresolution linear interpolation leads to ringing
and haloing. This arises from the varying regions of support
for the interpolation filter at multiple scales.

We address this with a unique upsampling scheme.
Upscaling progresses from coarsest to finest layers in the
illumination buffer. At each resolution, texels containing
illumination information are linearly interpolated with
neighboring texels of the same resolution, whether they
were originally rendered at that resolution or upsampled
from a lower resolution during a previous pass:

NICHOLS AND WYMAN

128x128

—

256x256,

(@) (b)

: INTERACTIVE INDIRECT ILLUMINATION USING ADAPTIVE MULTIRESOLUTION SPLATTING

‘| nearest neighborupsampling

©

Fig. 7. Each illumination buffer level contains pieces of the indirect illumination at a different resolution. Artifacts from combining the illumination
buffers using (a) nearest neighbor upsampling and (b) naive bilinear interpolation.

16516 result samples (at 32x32);

combine,
upsample, and
interpolate

R result samples (at 62

combine,
upsample, and
interpolate

< B
UMILEIE0] eite dYestlt
w N

/ \.
final ,J;:z.wrrfor'id_ieﬁa

(additional upsampling passes)

Fig. 8. Two upsampling passes, from 322 to 64> to 1282. At each level, missing samples are combined with interpolated data from previous levels. The
result is interpolated to higher resolution, and used as the input for the next upsampling pass. The noninterpolated summation (lower left), and the

final interpolated and upsampled result (lower middle).

for all layers 1 € illumination buffer, coarsest to finest do
for all (texels t € 1) do

// 3x3 input texels both from the illumination
// buffer and from previous passes
inputTexels[9];

renderedTexels[9];

interpolationWeights[9];

outputTexel = EmptyTexel();
totalWeight = 0;

for (i=0 to 8) do
if HasData(inputTexels[i]) or
HasData(renderedTexels[i) then
totalWeight + = interpolationWeights[i];
outputTexel + = interpolationWeights][i] *
(renderedTexels[i] + inputTexels[i]);

outputTexel/ = totalWeight;

After each layer has been upsampled, the result then
becomes the input for the next resolution. To avoid the
haloing and ringing shown in Fig. 7, each upsampling pass
only outputs interpolated texels in locations where the
illumination buffer already contained data for that resolu-
tion: energy is never pulled from empty areas nor spread
into them, and all texels that contained no energy at the
start of each pass remain empty. Fig. 8 demonstrates this
process graphically through two upsampling steps.

After processing all the layers, we have a single
combined and upsampled image that varies smoothly,
without ringing artifacts. Furthermore, this method does
not spread energy across major discontinuities. Our refine-
ment process ensures that areas with these discontinuities
are refined into high-resolution subsplats. Because each
texel is interpolated only with texels of equal resolution and
those upsampled from coarser resolutions, energy stays on
the correct side of a discontinuity.

4 |MPLEMENTATION

We implemented our method using OpenGL and GLSL on
a machine with a dual-core 3 GHz Pentium 4 and a GeForce

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. X, XXX/XXX 2010

8ok Performance Variations By Viewpoint

60K

20K

Number of Subsplats Rendered

40

30

20

Number of Frames Per Second (fps)

Indirect 1982
40K \ Resolu- 162 VPLs | 322 VPLs | 642 VPLs
. VPLs
tion
65.5K 262.1K 1.05M 4.19M
162 0.0ms 0.0ms 0.0ms 0.0ms
Number of Subsplats Over Time 95 fps 60 fps 25 fps 74 fps
— 120.5K 4849K 1.94M 7.20M
322 3.9ms 15.9ms 49.4ms 201.6ms
65 fps 32 fps 13 fps 2.83 fps
220.4K 893.9K 3.57M
642 11.7ms 28.0ms 86.3ms N/A
52 fps 21 fps 6.4 fps
421.8K 1.73M 6.66M
1282 17.7ms 37.1ms 149.0ms N/A
39 fps 14 fps 4.0 fps
852.0K 3.22M
2562 35.3ms 60.1ms N/A N/A
Framerate Over Time 27 fps 8.9 fps

TABLE 1
Refinement Costs for the Buddha with a Phong BRDF, with
Subsplats Refined Separately for each VPL

Frames
mm Depth and Normal mm Depth Derivative and Normal
Depth Derivative and Curvature Derivative === Depth and Curvature Derivative

Fig. 9. Framerates and subsplat counts during a flythrough of the dragon
scene. Four different combinations of depth and normal discontinuity
detection are illustrated, rendered at 1,024> with similar visual quality.

GTX 280. Our implementation uses OpenGL’s geometry
shader and transforms feedback extensions. We use a
geometry shader to subdivide subsplats, selectively either
dividing each input into four new outputs, or passing it
through unchanged; the resulting subsplats are output to a
vertex buffer object. We repeat the refinement process until
the highest resolution subsplats have reached an appro-
priate resolution.

All images in this paper were generated using a final
output resolution of 2,048%, which was downsampled to a
1,024% window for an antialiased rendering.

4.1 Discontinuities and Min-Max Mipmaps

We found that neither depth derivatives nor surface
curvature offer a substantive advantage in detecting
discontinuities. Min-max mipmaps constructed with depth
derivatives sometimes produce a smaller set of subsplats
than those built with direct linear depth values. However,
they are slightly more costly to construct due to the
additional samples required to calculate the derivative. In
practice, using a depth derivative min-max mipmap is
slightly slower than using one constructed with linear
depth values for a similar level of quality.

Min-max mipmaps built using surface curvature values
do not fare as well. In particular, detection of gradually
curving surfaces is problematic using curvature mipmaps:
even if a great deal of change occurs within the complete
image-space area of a low-resolution texel, curvature
between neighboring high-resolution texels may be mini-
mal. To detect these gradual changes, a very low threshold
is required, leading to unnecessary subdivisions and a
corresponding performance hit.

Fig. 9 demonstrates the relative performance of these
discontinuity detection methods as the scene viewpoint
changes. Although each method was configured to produce

Each cell contains the number of refined subsplats, refinement time, and
the resulting framerate. “N/A” entries required excessive memory and
execution time.

results of similar quality, an absolute qualitative compar-
ison is difficult. In particular, the different normal dis-
continuity detection methods each accentuate certain
features. For example, when reproducing a gently curved
surface with the surface curvature method, a very low
threshold must be used to match the quality of the surface
normal method. However, this also results in sharp,
detailed reproductions of small surface features that would
be smoothed over by the surface normal method at
anything but a very low threshold. Additionally, different
viewpoints can yield results of varying quality depending
on the detection method used.

4.2 VPLs and Subsplat Refinement

Our initial implementation refined a separate list of
subsplats for each VPL as described in Section 3.3.1,
computing illumination during refinement to guide the
splitting process. With this approach, generating and
refining a list of subsplats for each VPL is the most
expensive part of our method, often by a large margin.
Refining a single subsplat into four new subsplats using the
method outlined in Section 3.3.1 takes roughly 30 nanose-
conds, and rendering it takes a comparable amount of time.
At these speeds, hundreds of thousands of subsplats can be
refined and rendered while easily maintaining interactive
rates. However, with each VPL generating tens of thou-
sands of subsplats, the refinement and rendering costs
quickly become unmanageable. As Table 1 illustrates,
subsplat counts can easily climb into the millions, even at
low VPL counts and relatively low resolutions. Addition-
ally, because this method requires the calculation of
illumination during refinement, more expensive BRDFs
increase these costs yet further.

For diffuse scenes we found that splats were being split
almost identically for each VPL. Noting this, we implemen-
ted an alternate approach that performs splat refinement just
once per frame, avoiding illumination calculations and
refining solely based on normal and depth discontinuities.

NICHOLS AND WYMAN: INTERACTIVE INDIRECT ILLUMINATION USING ADAPTIVE MULTIRESOLUTION SPLATTING

Framerates for Various Normal Thresholds

TABLE 2
Framerates at Various Resolutions of Indirect lllumination
Indirect Simple Spinning Dragon Flying
Resolu- Teapot Buddha & Bunny Bunnies
tion (6.3K (250K (405K (417K
triangles) triangles) triangles) triangles)
1282 68 fps 60 fps 59 fps 52 fps
2562 50 fps 42 fps 42 fps 41 fps
5122 33 fps 30 fps 28 fps 31 fps
10242 22 fps 24 fps 21 fps 25 fps

& g0

o ~v

i~

S

)

&

g

§ 40

E: 2

W

g 20 327 w647 m— 128

2 2562 5127 w1024 s
0.5 1.0 15 2.0

Normal Threshold

Fig. 10. Framerates of our method in the dragon scene with an
increasing normal refinement threshold, at various resolutions of indirect
illumination.

All VPLs then reuse the same subsplats for rendering. While
there is no guarantee that normal and depth discontinuities
are completely predictive of areas that will need refinement,
we found that in diffuse scenes, this approach yields a
significant increase in performance while maintaining
similar image quality. Unless otherwise stated, all images
and results in this paper are generated using this approach.

4.3 Adding Surface Detail

The number of subsplats generated has a significant impact
on the performance of our technique. Since this number is
heavily influenced by thresholds within the refinement
process, these thresholds can serve as a parameter for
tuning performance. This is particularly true of the thresh-
old used to detect normal discontinuities, which ranges
from [0..2]; a higher threshold allows faster framerates, at
the expense of fine surface details. Fig. 10 illustrates this
effect for one viewpoint in the dragon scene. While having
no effect at low resolutions, at high resolutions the normal
threshold substantially affects the overall framerate. This
parameter’s effect on image quality can be observed in
Fig. 11: with high normal thresholds, insignificant surface
features of the Buddha do not trigger refinement. These
areas are then rendered at low resolution, effectively
blurring them out.

(a) (b) (©)

Fig. 11. The Buddha model rendered at 1,0242. (a) The image, rendered
with a normal splitting threshold of 0.25, runs at 8 fps; (b) and (c) the
images use a threshold of 1.4 and run at 32 fps. (c) The image
approximates surface detail with the technique described in Section 4.3,
using a = 0.5.

One solution is to approximate the missing detail,
modulating the indirect illumination using the surface
normal’s alignment toward the camera. For each image-
space pixel of illumination ¢, with view vector V and
surface normal N at the same location, and a parameter «
(ranging from [0..1]) controlling the effect’s intensity:

cout:c*(a*<‘77ﬁ>+(l—a)) (3)

Ideally, instead of modulating the indirect illumination
with the viewing vector, we would introduce cosine falloff by
modulating with the vector to each VPL. However, once the
indirect illumination has been splatted into the illumination
buffer, VPL locations are no longer easily accessible. While
our method is somewhat ad hoc, it gives visually plausible
results and incurs almost no runtime cost. This allows the use
of higher normal thresholds, which in turn leads to faster
framerates. This approximation may cause some areas to
appear overly dark, which may be objectionable in some
circumstances. The third panel of Fig. 11 illustrates the effect
of replacing surface detail using this method.

5 RESULTS AND DiISCUSSION

Like other splatting approaches for indirect illumination,
the performance bottleneck in our technique is the cost of
rendering the indirect subsplats. The resolution of each
subsplat does not matter: in our approach, subsplats each
cover a single texel, so the cost of rendering them is
independent of resolution. This also allows us to render
subsplats as points, rather than triangle meshes, quads, or
point sprites. We achieved a 5 percent speed increase
simply by switching from quads to points.

As demonstrated by the data in Table 2, our performance
has little dependency on geometric scene complexity: when
rendering indirect illumination at 1,024?, performance is
similar whether the scene contains a single teapot or many
complex models. Geometry is rasterized twice, one render-
ing from the light and one from the eye. Only at fairly low
resolutions does the geometric complexity of a scene have a
significant effect on performance. However, our method is
sensitive to the visual complexity of a scene. When looking at
a flat wall, few subsplat refinements are required; complex
geometry requires refinement around edges, creases, and
crevices. High-frequency random geometry may require a
uniformly dense refinement, where naive splatting would
outperform our multiresolution approach.

As the viewpoint moves within the scene, changing the
visual complexity of the current view, total subsplat count

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. X, XXX/XXX 2010

Fig. 12. Example scenes using our technique, with indirect illumination rendered at 1,0242. These scenes were rendered with (a) direct illumination
only; indirect illumination generated with a curvature min-max mipmap, using threshold (b) 0.1 and (c) 0.3; indirect illumination generated with a
surface normal min-max mipmap as described in Section 3.2, using normal threshold (d) 0.2 and (e) 1.5; (f) using normal threshold 1.5, and replacing
surface detail using the method described in Section 4.3 (with o = 0.5).

can vary up to 300 percent. Since splatting remains the As with other splatting techniques, we ignore visibility

bottleneck in our method, overall performance is strongly considerations when accumulating indirect illumination,

tied to the number of subsplats rendered, an effect that can ~ which can result in an overly bright image. VPLs on a
be easily observed in Fig. 9. scene’s ceiling illuminate not only the surface of a table, but

NICHOLS AND WYMAN: INTERACTIVE INDIRECT ILLUMINATION USING ADAPTIVE MULTIRESOLUTION SPLATTING 11

Fig. 13. Compare (a) our work to (b) reflective shadow mapping, with
near indistinguishable results. One problem our work shares with RSMs
is the need to clamp the minimum »?* falloff to avoid point singularities.
When using every texel of the RSM as a VPL, no clamping is required
and generates (c) a brighter image (lower middle). (d) A path traced
comparison shows that the main differences are lack of indirect visibility,
clamping the r? falloff to avoid singularities, and an approximation that all
RSM texels subtend the same solid angle. The solid angle approxima-
tion causes our work and RSM implementation to appear dimmer toward
the inside of the spotlight and brighter toward the outside.

also the floor below the table. One method of addressing
this might be to approximate visibility independently, e.g.,
using ambient occlusion, and modulate the results. In the
future, we also hope to explore multiresolution techniques
that account for visibility.

Fig. 1 demonstrates the dragon and bunny scene
rendered with direct illumination only, and with indirect
illumination subdivided to a maximum refinement of 5122.
Fig. 12 depicts several different scenes under varying
rendering parameters, rendered with a maximum refine-
ment level of 1,204%. In the second and third rows,
discontinuities were detected using min-max mipmaps
built using the surface curvature method described in
Section 4.1, using a low threshold for the images in the
second row and a higher threshold for those in the third
row. The remaining three rows were rendered with min-
max mipmaps built from surface normals, using a low

Framerates for Various Numbers of VPLs

& 120
2
S 100
°
$ 80
g
S 60
S
s 40
£
3 2
—
10* 20? 30? 40* 50* 60*

Number of VPLs

Fig. 14. Framerates of our method in the dragon scene using increasing
numbers of VPLs, at various resolutions of indirect illumination.

surface normal threshold for the fourth row, and a high
threshold for the fifth and sixth rows. The sixth row
illustrates the effects of the reintroduction of detail using
the ad hoc method described in Section 4.3. The visual
appearance of complex objects, especially those close to the
camera, depends heavily on refinement parameters. On the
other hand, scenes with high geometric complexity, such as
the kitchen scene in the rightmost column, often suffer little
degradation in quality even when rendered with higher
normal thresholds.

In Fig. 13, we compare the results of our technique to
naive reflective shadow maps and a ground truth image
produced by a Monte Carlo path tracer.

Fig. 14 explores performance on the dragon scene,
showing variations due to the number of VPLs and
refinement passes. With no refinement, indirect illumina-
tion is rendered at 162 resolution. Each refinement doubles
the resolution (up to 1,204% after six passes).

5.1 VPL Sampling Artifacts

We regularly sample the reflective shadow maps to choose
our virtual lights. While this sampling scheme is simple, it
can result in flickering under animation as VPL locations
jump on and off surfaces in successive frames. In simple
scenes, we found that 162 to 322 VPLs gave smooth results
under animation, with minimal flickering. More compli-
cated scenes (in which VPLs jump between surfaces more
often) require larger number of VPLs to achieve smooth
results. This represents a tradeoff; increasing the number of
VPLs reduces performance (as demonstrated by Fig. 14). A
more sophisticated VPL sampling scheme may reduce the
number required and minimize flickering.

5.2 Upsampling Artifacts

Our upsampling method assumes that adjacent texels in the
illumination buffer can be safely interpolated together
without visual artifacts. This relies heavily on sufficient
subsplat refinement, which in turn depends on the
successful detection of discontinuities. Suboptimal behavior
of either of these processes results in a set of subsplats that
does not adequately represent the scene. Additionally,
when discontinuities are present in low-resolution sub-
splats, energy is blurred across the discontinuity, causing

(a) (b)

Fig. 15. Examples of upsampling artifacts, including (a) interpolated
and (b) uninterpolated versions. Top group: artifacts arising from
insufficient refinement along coarse mipmap boundaries (top row)
and correct refinement (bottom row). Bottom group: artifacts from
insufficient refinement along diagonals (top row) and correct
refinement (bottom row).

distracting artifacts that flicker and pop under animation as
subsplats are re-refined each frame.

Fig. 15 presents two examples of artifacts arising from
inadequate refinement. In the top example, a horizontal
edge lies on a mipmap boundary, and is not correctly
detected as a discontinuity. The min-max mipmap can be
constructed to detect discontinuities such as these by
sampling outside the usual neighborhood, allowing refine-
ment when a discontinuity is present not just in the cell
being refined, but in any adjacent cell. However, this
modification causes an excessive amount of refinement,
incurring as much as a 40 percent speed penalty.

Artifacts also occur when a mipmap cell is situated
diagonally to a discontinuity, as shown in the lower half of
Fig. 15. To address these, when evaluating whether to refine
a given subsplat, we detect discontinuities not just in the
current subsplat, but also in all subsplats situated diag-
onally. This does result in overrefinement (and a roughly 2-
3 percent speed penalty), but it is necessary to minimize
these particularly distracting artifacts.

6 FUTURE WORK

The performance of our method depends on the set of
refined subsplats, and visual quality depends on the
correct interpolation and upsampling of that set. We plan
to further address both of these aspects of our method,
improving both the refinement and upsampling processes,
leading to an increase in performance and visual quality.
In addition, several other avenues of future work exist,
each of which would improve the applicability and
performance of our method.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 16, NO. X, XXX/XXX 2010

First, we are working toward choosing VPLs intelli-
gently rather than rendering each subsplat with the same
fixed set. While we liken our approach to hierarchical
radiosity, we currently use adaptive subdivision only for
the receiving surfaces of the scene. Applying similar ideas
to the selection and refinement of VPLs will allow us to
simulate the effects of a large number of VPLs, while in
actuality using a relatively small number. We also plan to
intelligently select the subset of VPLs used during
rendering, further improving performance.

Furthermore, we plan to continue exploring the use of
our method with nondiffuse surfaces. The primary limita-
tion of our current approach is the excess generation of
subsplats, which quickly overwhelms memory and band-
width resources. This can be improved with a more
intelligent refinement method. One approach might first
generate a list of subsplats independently of any VPL, as we
currently do with diffuse surfaces, and then iteratively
refine subsplats only as needed for each VPL. The result
would be a dramatic reduction in the total number of
subsplats, increasing performance.

Finally, we believe that our multiresolution approach is
applicable to any number of additional rendering problems,
such as caustics or shadows, that do not require all areas of
an image to be high resolution.

7 CONCLUSION

This paper introduced a novel multiresolution splatting
technique, and described its application to the rendering of
indirect illumination with a reflective shadow map. Our
method reduces the cost of rendering indirect illumination
by rendering each piece of it at the lowest possible
resolution. This allows indirect illumination to be rendered
at high resolutions at interactive rates, without artificially
restricting each VPL’s ability to contribute illumination to
the entire scene.

We discussed a variant of our method that works
efficiently with diffuse surfaces, and a more general form
that allows its use with arbitrary BRDFs. We discussed
artifacts that can arise and potential solutions, presented a
simple and efficient method of adding plausible detail to
indirect illumination, and evaluated the effects of various
parameters and configurations on performance. Finally, we
discussed future directions and applications of our method.
We believe that our multiresolution splatting methods will
enable the rendering of many different global illumination
methods.

REFERENCES

[1] S. Zhukov, A. Iones, and G. Kronin, “An Ambient Light
[lumination Model,” Proc. Eurographics Rendering Workshop,
pp. 44-45, 1998.

[2] P.-P. Sloan,]J. Kautz, and]. Snyder, “Precomputed Radiance
Transfer for Real-Time Rendering in Dynamic, Low-Frequency
Lighting Environments,” ACM Trans. Graphics, vol. 21, pp. 527-
536, 2002.

[3] E. Tabellion and A. Lamorlette, “An Approximate Global
Ilumination System for Computer Generated Films,” ACM Trans.
Graphics, vol. 23, no. 3, pp. 469-476, 2004.

[4] C. Dachsbacher and M. Stamminger, “Reflective Shadow Maps,”
Proc. Symp. Interactive 3D Graphics and Games, pp. 203-231, 2005.

[5S] C. Dachsbacher and M. Stamminger, “Splatting Indirect Illumina-
tion,” Proc. Symp. Interactive 3D Graphics and Games, pp. 93-100,
2006.

NICHOLS AND WYMAN: INTERACTIVE INDIRECT ILLUMINATION USING ADAPTIVE MULTIRESOLUTION SPLATTING 13

(0]
(7]
(8]

]
[10]

(1]

(12]

(13]

[14]

[15]

[16]

(17

[18]

[19]

(20]

(21]

[22]
(23]

[24]

[25]

[20]

(27]

(28]

[29]

[30]

(31]

(32]

A. Keller, “Instant Radiosity,” Proc. ACM SIGGRAPH, 1997.

P. Hanrahan, D. Salzman, and L. Aupperle, “A Rapid Hierarchical
Radiosity Algorithm,” Proc. ACM SIGGRAPH, 1991.

M.F. Cohen and J.R. Wallace, Radiosity and Realistic Image
Synthesis. Academic Press Professional, citeseer.ist.psu.edu/
cohen93radiosity.html, 1993.

M. Bunnell, “Dynamic Ambient Occlusion and Indirect Lighting,”
GPU Gems 2, Addison-Wesley, pp. 223-233, 2005.

J. Kontkanen and S. Laine, “Ambient Occlusion Fields,” Proc.
Symp. Interactive 3D Graphics and Games, 2005.

M. Malmer, F. Malmer, U. Assarsson, and N. Holzschuch, “Fast
Precomputed Ambient Occlusion for Proximity Shadows,”
J. Graphics Tools, vol. 12, no. 2, pp. 59-71, 2007.

A.W. Kristensen, T. Akenine-Moller, and H.W. Jensen, “Precom-
puted Local Radiance Transfer for Real-Time Lighting Design,”
ACM Trans. Graphics, vol. 24, no. 3, pp. 1208-1215, 2005.

K. Zhou, Y. Hu, S. Lin, B. Guo, and H.-Y. Shum, “Precomputed
Shadow Fields for Dynamic Scenes,” ACM Trans. Graphics, vol. 24,
no. 3, pp. 1196-1201, 2005.

K. Iwasaki, Y. Dobashi, F. Yoshimoto, and T. Nishita, “Precom-
puted Radiance Transfer for Dynamic Scenes Taking into Account
Light Interreflection,” Proc. Eurographics Symp. Rendering, pp. 35-
44, 2007.

J. Kautz, J. Lehtinen, and T. Aila, “Hemispherical Rasterization for
Self-Shadowing of Dynamic Objects,” Proc. Eurographics Symp.
Rendering, pp. 179-184, 2004.

Z.Ren, R. Wang, J. Snyder, K. Zhou, X. Liu, B. Sun, P.-P. Sloan, H.
Bao, Q. Peng, and B. Guo, “Real-Time Soft Shadows in Dynamic
Scenes Using Spherical Harmonic Exponentiation,” ACM Trans.
Graphics, vol. 25, no. 3, pp. 977-986, 2006.

S. Laine, H. Saransaari, J. Kontkanen, J. Lehtinen, and T. Aila,
“Incremental Instant Radiosity for Real-Time Indirect Illumina-
tion,” Proc. Eurographics Symp. Rendering, 2007.

T. Ritschel, T. Grosch, J. Kautz, and S. Mueller, “Interactive
[lumination with Coherent Shadow Maps,” Proc. Eurographics
Symp. Rendering, 2007.

T. Ritschel, T. Grosch, M.H. Kim, H.-P. Seidel, C. Dachsbacher,
and J. Kautz, “Imperfect Shadow Maps for Efficient Computation
of Indirect Illumination,” Proc. ACM SIGGRAPH Asia, 2008.

C. Dachsbacher, M. Stamminger, G. Drettakis, and F. Durand,
“Implicit Visibility and Antiradiance for Interactive Global
[Mumination,” ACM Trans. Graphics, vol. 26, no. 3, p. 61, 2007.

Z. Dong,]. Kautz, C. Theobalt, and H.-P. Seidel, “Interactive
Global Illumination Using Implicit Visibility,” Proc. Pacific
Graphics, pp. 77-86, 2007.

T. Saito and T. Takahashi, “Comprehensible Rendering of 3-d
Shapes,” Proc. ACM SIGGRAPH, pp. 197-206, 1990.

H. Samet, The Design and Analysis of Spatial Data Structures.
Addison-Wesley, 1990.

G. Guennebaud, L. Barthe, and M. Paulin, “Real-Time Soft
Shadow Mapping by Backprojection,” Proc. Eurographics Symp.
Rendering (EGSR), pp. 227-234, 2006.

N.A. Carr, J. Hoberock, K. Crane, and J.C. Hart, “Fast gpu Ray
Tracing of Dynamic Meshes Using Geometry Images,” Proc.
Graphics Interface Conf., pp. 203-209, 2006.

A. Tevs, L. Thrke, and H.-P. Seidel, “Maximum Mipmaps for Fast,
Accurate, and Scalable Dynamic Height Field Rendering,” Proc.
Symp. Interactive 3D Graphics and Games, 2008.

P. Gautron, J. Krivanek, K. Bouatouch, and S.N. Pattanaik,
“Radiance Cache Splatting: A GPU-Friendly Global Illumination
Algorithm,” Proc. Eurographics Symp. Rendering, pp. 55-64, 2005.
P. Shanmugam and O. Arikan, “Hardware Accelerated Ambient
Occlusion Techniques on Gpus,” Proc. Symp. Interactive 3D
Graphics and Games, pp. 73-80, 2007.

P.-P. Sloan, N. Govindaraju, D. Nowrouzezahrai, and J. Snyder,
“Image-Based Proxy Accumulation for Real-Time Soft Global
Ilumination,” Proc. Pacific Graphics Conf., pp. 97-105, 2007.

M. Shah, J. Konttinen, and S. Pattanaik, “Caustics Mapping: An
Image-Space Technique for Real-Time Caustics,” IEEE Trans.
Visualization and Computer Graphics, vol. 13, no. 2, pp. 272-280,
Mar./Apr. 2007.

C. Wyman and C. Dachsbacher, “Reducing Noise in Image-Space
Caustics with Variable-Sized Splatting,” |. Graphics Tools, vol. 13,
no. 1, pp. 1-17, 2008.

R. Herzog, V. Havran, S. Kinuwaki, K. Myszkowski, and H.-P.
Seidel, “Global Illumination Using Photon Ray Splatting,”
Computer Graphics Forum, vol. 26, no. 3, pp. 503-513, 2007.

(33]

(34]

(33]

[30]

(371

(38]

(39]

[40]

S. Rusinkiewicz and M. Levoy, “Qsplat: A Multiresolution Point
Rendering System of Large Meshes,” Proc. ACM SIGGRAPH,
pp- 343-352, 2000.

D. Laur and P. Hanrahan, “Hierarchical Splatting: A Progressive
Refinement Algorithm for Volume Rendering,” Proc. ACM
SIGGRAPH, pp. 285-288, 1991.

J. Lehtinen, M. Zwicker, E. Turquin, J. Kontkanen, F. Durand, F.
Sillion, and T. Aila, “A Meshless Hierarchical Representation for
Light Transport,” ACM Trans. Graphics, vol. 27, no. 3, 2008.

C. Wyman, “Hierarchical Caustic Maps,” Proc. Symp. Interactive
3D Graphics and Games, 2008.

G. Nichols and C. Wyman, “Multiresolution Splatting for Indirect
Ilumination,” Proc. Symp. Interactive 3D Graphics and Games (I3D
"09), 2009.

P. Tole, F. Pellacini, B. Walter, and D. Greenberg, “Interactive
Global Illumination in Dynamic Scenes,” Proc. ACM SIGGRAPH,
pp. 537-546, 2002.

D.P. Mitchell, “Generating Antialiased Images at Low Sampling
Densities,” Proc. ACM SIGGRAPH '87, pp. 65-72, 1987.

R.B. Fisher, From Surfaces to Objects: Computer Vision and Three
Dimensional Scene Analysis. John Wiley & Sons, Inc., 1989.

Greg Nichols received the BA degree in
computer science from the Central College in
2002, and the master's degree in computer
science from the University of lowa in 2008. He
is currently a graduate student at the University
of lowa, and expects to complete his PhD in
computer science in 2010. His research deals
primarily with interactive global illumination.

Chris Wyman received the BS degree in
mathematics and computer science from the
University of Minnesota in 1999, and the PhD
degree in computer science from the University
of Utah in 2004. He is an assistant professor in
the Department of Computer Science at the
University of lowa. His research interests focus
on interactive global illumination, including both
diffuse color bleeding and specular focusing of
light, but also extend to other interactive and

realistic rendering problems, visualization, and perceptual issues in
rendering. He is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

