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Figure 1: This figure shows the components of the reflective shadow map (depth, world space coordinates, normal, flux) and the resulting
image rendered with indirect illumination from the RSM. Note that the angular decrease of flux is shown exaggerated for visualization.

Abstract

In this paper we present ”reflective shadow maps”, an algorithm for
interactive rendering of plausible indirect illumination. A reflective
shadow map is an extension to a standard shadow map, where every
pixel is considered as an indirect light source. The illumination due
to these indirect lights is evaluated on-the-fly using adaptive sam-
pling in a fragment shader. By using screen-space interpolation of
the indirect lighting, we achieve interactive rates, even for complex
scenes. Since we mainly work in screen space, the additional effort
is largely independent of scene complexity. The resulting indirect
light is approximate, but leads to plausible results and is suited for
dynamic scenes. We describe an implementation on current graph-
ics hardware and show results achieved with our approach.

CR Categories: I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and tex-
tureI.3.3 [Computer Graphics]: Hardware Architecture—Graphics
processors

Keywords: indirect illumination, hardware-assisted rendering

1 Introduction

Interactive computer graphics has developed enormously over the
last years, mainly driven by the advance of graphics acceleration
hardware. Scenes of millions of polygons can be rendered in real-
time on consumer-level PC cards nowadays. Programmability al-
lows the inclusion of sophisticated lighting effects. However, these
effects are only simple subcases of global illumination, e.g. reflec-
tions of distant objects or shadows of point lights. Real global illu-
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mination, however, generates subtle, but also important effects that
are mandatory to achieve realism.

Unfortunately, due to their global nature, full global illumina-
tion and interactivity are usually incompatible. Ray Tracing and
Radiosity—just to mention the two main classes of global illumi-
nation algorithms—require minutes or hours to generate a single
image with full global illumination. Recently, there has been re-
markable effort to make ray tracing interactive (e.g. [Wald et al.
2003]). Compute clusters are necessary to achieve interactivity at
good image resolution and dynamic scenes are difficult to handle,
because they require to update the ray casting acceleration struc-
tures for every frame. Radiosity computation times are even further
from interactive. Anyhow, a once computed radiosity solution can
be rendered from arbitrary view points quickly, but, as soons as
objects move, the update of the solution becomes very expensive
again.

It has been observed that for many purposes, global illumination so-
lutions do not need to be precise, but only plausible. In this paper,
we describe a method to compute a rough approximation for the
one-bounce indirect light in a scene. Our method is based on the
idea of the shadow map. In a first pass, we render the scene from
the view of the light source (for now, we assume that we have only
one spot or parallel light source in our scene). The resulting depth
buffer is called shadow map, and can be used to generate shadows.
In a reflective shadow map, with every pixel, we additionally store
the light reflected off the hit surface. We interpret each of the pixels
as a small area light source that illuminates the scene. In this pa-
per, we describe how the illumination due to this large set of light
sources can be computed efficiently and coherently, resulting in ap-
proximate, yet plausible and coherent indirect light.

2 Previous Work

Shadow maps [Williams 1978; Reeves et al. 1987] and shadow vol-
umes [Crow 1977] are the standard shadowing algorithms for inter-
active applications. Recently, there have been extensions of both
approaches to area lights [Assarsson and Akenine-Möller 2003;
Chan and Durand 2003; Wyman and Hansen 2003]. Sometimes,
such soft shadows are already referred to as ‘global illumination’.
In this paper, we concentrate on indirect illumination from point
lights, but our approach can easily be combined with any of these
soft shadow techniques.



Others generate global illumination images at interactive rates, but
they rely on costly precomputations and are thus not suited for dy-
namic scenes [Walter et al. 1997; Sloan et al. 2002; Bala et al.
2003]. In Instant Radiosity [Keller 1997], the indirect light is repre-
sented by a set of point lights, the contributions of which are gath-
ered using many rendering passes. With Instant Radiosity, dynamic
objects and lights are possible, but many rendering passes are re-
quired.

Interactive ray tracing can generate global illumination effects at
interactive frame rates [Wald et al. 2001b; Wald et al. 2001a; Wald
et al. 2002; Wald et al. 2003]. These approaches still require clus-
ters with several PCs to achieve interactivity at high resolution.

Our approach combines ideas from two previous publications. In
[Tabellion and Lamorlette 2004], a global illumination method for
offline film production rendering is presented. The authors demon-
strate that one-bounce indirect illumination is sufficient in many
cases. They generate a texture atlas containing the direct light, and
then gather the first bounce indirect light from this texture. The sec-
ond method we build upon are Translucent Shadow Maps [Dachs-
bacher and Stamminger 2003]. In this paper, a shadow map is ex-
tended such that all pixels in a shadow map are considered as sub-
surface light sources. By gathering their contribution, translucent
lighting can be approximated.

3 Reflective Shadow Maps

Reflective Shadow Maps (RSMs) combine the ideas of [Tabellion
and Lamorlette 2004] and [Dachsbacher and Stamminger 2003].
The idea is that we consider all pixels of a shadow map as indirect
light sources that generate the one-bounce indirect illumination in a
scene. This idea is based on the observation, that if we have a single
point light source, all one-bounce indirect illumination is caused by
surfaces visible in its shadow map. So in this case, the shadow map
contains all information about the indirect lighting, and no radiosity
texture atlas as in [Tabellion and Lamorlette 2004] is needed. Thus
Reflective Shadow Maps are more similar to Translucent Shadow
Maps [Dachsbacher and Stamminger 2003], where the pixels of a
shadow map are also considered as point lights.

In the following, we describe what we exactly store in a reflective
shadow map (Sect. 3.1), how a reflective shadow map is generated
(Sect. 3.2), and how the indirect illumination can be evaluated from
it (Sect. 3.3). Since the indirect light evaluation is expensive, we in-
troduce in Sect. 4 a screen-space interpolation method that reduces
the number of evaluations and leads to interactive display rates.

3.1 Data

We assume that all surfaces in the scene are diffuse reflectors. An
RSM stores with every pixel p the depth value dp, the world space
position xp, the normal np, and the reflected radiant flux Φp of the
visible surface point (see Fig.1). Every pixel is interpreted as a
pixel light that illuminates the scene indirectly. The world space
position could be recomputed from the pixel coordinates and the
depth value, however we can save valuable pixel shader instructions
by having the world space positions directly available. The flux
Φp defines its brightness, and the normal np its spatial emission
characteristics (see Fig. 2). If we assume that the light source is
infinitely small, we can describe the radiant intensity emitted into
direction ω as

Ip(ω) = Φp max{0,
〈
np|ω

〉
}, where 〈|〉 is the dot product.

Figure 2: Two indirect pixel lights xp and xq corresponding to two
RSM pixels p and q

The irradiance at a surface point x with normal n due to pixel light
p is thus:

Ep(x,n) = Φp
max{0,

〈
np|x− xp

〉
}max{0,

〈
n|xp − x

〉
}

||x− xp||4
. (1)

Note that we intentionally decided to store radiant flux instead of
radiosity or radiance. By this, we don’t have to care about the rep-
resentative area of the light, which makes the generation and the
evaluation simpler.

3.2 Generation

An RSM is generated just like a standard shadow map, but with
multiple render targets: additionally to the depth buffer storing the
depth values dp, we generate a normal buffer and a world space
position buffer with the np and xp, and a flux buffer storing Φp.
Since Φp stores the reflected flux, its computation is simple. First,
we have to compute the flux emitted through every pixel. For a
uniform parallel light, this is a constant value. For a uniform spot
light, this flux decreases with the cosine to the spot direction due
to the decreasing solid angle. The reflected flux is then the flux
through the pixel times the reflection coefficient of the surface. No
distance attenuation or receiver cosine must be computed. As a
result, the flux buffer looks like an unshaded image (compare Fig. 1,
4th column).

As it is typical for many global illumination algorithms, problems
appear along the common boundary of two walls. In this case, the
illumination integral has a singularity, which is difficult to integrate
numerically. We found that these problems can be largely reduced,
if we move the pixel lights in negative normal direction by some
constant offset. This is possible, because we do not consider occlu-
sion for indirect illumination (see below).

3.3 Evaluation

The indirect irradiance at a surface point x with normal n can be ap-
proximated by summing up the illumination due to all pixel lights:

E(x,n) = ∑
pixelsp

Ep(x,n) (2)

Consider as example Fig. 2. A spot light illuminates a room with
a table from the upper left. For a particular light view pixel p,
we have a pixel light source at position xp, illuminating the scene



Figure 3: RSM sampling

along its normal np. The point x on the floor receives light from xp
according to Equ. 2. For pixel q, the pixel light lies on the table and
thus does not illuminate x.

Note that we do not consider occlusion for the indirect light sources,
so that in Fig. 2 y is indirectly illuminated by xp, although xp is not
visible from y. This is a severe approximation, and can lead to very
wrong results. However, in many cases it suffices to generate the
subtle indirect lighting effects; unprecise results are often accept-
able, as long as the indirect lighting effect is visible.

For a typical shadow map, the number of pixels is large (512x512),
so the evaluation of the above sum is very expensive and not prac-
tical in a realtime context. Instead, we have to reduce the sum to
a restricted number of light sources, e.g. 400. We do this using an
importance-driven approach, where we try to concentrate the sam-
pling to the relevant pixel lights. The idea can be best described
for the example in Fig. 3. x is not directly illuminated, so it is not
visible in the shadow map. If we project x into the shadow map,
the pixel lights that are closest in world space are also close in the
shadow map. x−2 and x−1 are relatively close, but since their nor-
mal points away from x, they do not contribute indirect illumina-
tion. x1 is very close, but lies on the same plane (floor) as x, so it
also does not contribute. The most relevant pixel light is x2.

In general, we can say that the distance between x and a pixel light
xp in the shadow map is a reasonable approximation for their dis-
tance in world space. If the depth values with respect to the light
source differ significantly, the world space distance is much bigger
and we thus overestimate the influence. However, the important in-
direct lights will always be close, and these must also be close in
the shadow map.

So we decided to obtain the pixel light samples as follows: first, we
project x into the shadow map (→ (s, t)). We then select pixel lights
around (s, t), where the sample density decrease with the squared
distance to (s, t). This can easily be achieved by selecting the sam-
ples in polar coordinates relative to (s, t), i.e. if ξ1 and ξ2 are uni-
formly distributed random numbers, we select the pixel light at po-
sition

(s+ rmaxξ1 sin(2πξ2), t + rmaxξ1 cos(2πξ2)). (3)

We then have to compensate the varying sampling density by
weighting the achieved samples with ξ 2

1 (and a final normalization).
An example sampling pattern is shown in Fig. 4.

In our implementation, we precompute such a sampling pattern
and reuse it for all indirect light computations, which gives us co-
herency. This temporal coherency reduces flickering in dynamic
scenes, however the spatial coherence can result in banding arti-
facts if the number of samples is not large enough. In our example
scenes, 400 samples were sufficient. Because we use a once com-
puted sampling pattern, we could use Poisson sampling to obtain a
more even sample distribution.

Figure 4: Sampling pattern example. The sample density decreases
and the sample weights (visualized by the disk radius) increases
with the distance to the center.

4 Screen-Space Interpolation

We compute the direct illumination using per-pixel lighting, where
the RSM is bound as standard shadow map. The indirect light-
ing computation as described above is still too expensive to be per-
formed for every pixel in an interactive application. However, with
a simple interpolation scheme we can drastically reduce the num-
ber of evaluations and use cheap interpolation for the majority of
the pixels.

In a first pass, we compute the indirect illumination for a low-
resolution image of the camera view. We then render the full reso-
lution camera view and check for every pixel, whether the indirect
light can be interpolated from the four surrounding low-res sam-
ples. Such a low-res sample is regarded as suitable for interpolation
if the sample’s normal is similar to the pixel’s normal, and if its
world space location is close to the pixel’s location. Each sample’s
contribution is weighted by the factors used for bi-linear interpola-
tion, including a normalization if not all four samples are used. If
three or four samples are considered as suitable, we interpolate the
indirect illumination. Otherwise, we discard the pixel in this render
pass and rather compute the indirect illumination with the complete
gathering step in a final pass.

Fig. 5 shows the effectiveness of our solution. Only for the red pix-
els, interpolation was not sufficient to compute the indirect light.
Of course, this effectiveness depends on the scene. On smooth
surfaces, interpolation works very well, whereas on unconnected,
complex geometry, such as a tree, the interpolation scheme will not
be applicable, so that the method falls back to full evaluation.

5 Implementation

We implemented our approach using Direct3D9 with Microsoft’s
High Level Shader Language and contemporary graphics hardware
supporting floating point render targets and programmable vertex
and fragment processing. GPUs providing Pixel Shaders 2.0 are
sufficient for an implementation of our method, although we used
Pixel Shader 3.0 hardware (supporting floating point blending na-
tively) for measuring our results.



Figure 5: Efficiency of screen space interpolation: only for the red
pixels no interpolation was reasonable.

The generation of the final image consists of multiple render passes,
most of which are required for the indirect lighting computation. In
an initial pass, the scene is rendered from the light’s view. But
instead of storing only the depth value to the first visible surface
through each pixel—like normal shadow maps—we also store the
surface normals, its world space location and the energy flux. Al-
though the world space location could be recomputed from the
depth value, we chose to store it in the render targets (three in total)
to save per-pixel instructions in subsequent render passes.

In order to decouple scene complexity from rendering performance
as far as possible and to prevent the execution of complex shaders
for hidden surfaces, we apply the direct and indirect illumination
as a deferred shading process. We generate textures storing the
required information per pixel, namely world space location and
normal, its corresponding coordinates in light space and the mate-
rial parameters. These textures are view-dependent and need to be
updated when the camera moves.

The next step is the gathering of the indirect illumination. This re-
quires sampling of the RSM at many different locations. For each
sample location the illumination is computed as in Equ. 1 and the
contributions are accumulated. When using Pixel Shader 2.0 GPUs,
instructions and texture lookups per shader are limited and the com-
putation has to be split up to distinct render passes and intermediate
results need to be accumulated. In this case, the sampling positions
may be provided by the main application via shader constants. Ap-
plying GPUs supporting PS3.0, all sampling can be done in a single
loop, where the sample positions are provided in a lookup texture.
Both options achieve comparable results, but the latter is faster.

We also implemented the screen-space interpolation scheme as de-
scribed above. First, a low-resolution image is computed with full
evaluation of the indirect lighting. Then, a full resolution image
is rendered, where a pixel shader evaluates the number of low-res-
samples suitable for interpolation and performs the interpolation if
three or four samples are suitable. After this, our image is largely
finished, but contains some pixels for which we still have to com-
pute the indirect illumination. This is done with the same Pixel
Shaders as used for the low-res image. To avoid the recomputa-
tion of all pixels, early z-culling techniques could be used where

available. We decided to render the two final render passes as a
grid of quadrilaterals on the screen and to use an occlusion query
for each quad. This tells us, which quadrilaterals are complete re-
constructed (all pixels rendered) in the first step and which contain
discarded pixels which need accurate computation of the indirect
illumination.

6 Results

We implemented our approach using an ATI Radeon 9700 card for
testing the Pixel Shader 2.0 version and a GeForce Quadro FX4000
for the PS3.0 code. Table 1 shows the result of our implementa-
tion of the Reflective Shadow Map method using a resolution of
512x512 for the reflective shadow map and the camera view. We
measured the difference in performance for various screen sub-
samplings and number of sample taps (the amount is determined
empirically). As it can be taken from the table, the performance
does not only depend on the total number of computed indirect il-
lumination values, but also suffers from pipeline stalls through the
occlusion query. All timings were collected on a Pentium 4 proces-
sor with 2.4GHz and the before mentioned GeForce card. Note that
we recompute the light and camera view for each frame, that is, the
light source and camera can be moved freely and interactively by
the user. The impact on the image quality for various settings is
shown in Figure 7. Figure 8 shows the contribution of one-bounce
indirect illumination to the table test scene.

indirect low-res screen
scene fps samples computed first pass quads
table 24.2 112 63299 32 × 32 32 × 32

14.3 224 63299 32 × 32 32 × 32
22.0 112 66120 64 × 64 32 × 32
13.0 224 66120 64 × 64 32 × 32
27.5 112 92745 32 × 32 16 × 16
15.9 224 92745 32 × 32 16 × 16

lucy 19.3 112 77613 32 × 32 32 × 32
11.4 224 77613 32 × 32 32 × 32
15.8 112 82031 64 × 64 32 × 32
9.1 224 82031 64 × 64 32 × 32

13.3 112 116320 64 × 64 16 × 16
droids 15.1 112 98048 64 × 64 32 × 32

7.9 224 98048 64 × 64 32 × 32
4.2 448 98048 64 × 64 32 × 32

16.4 112 95744 32 × 32 32 × 32
9.2 224 95744 32 × 32 32 × 32
4.8 448 95744 32 × 32 32 × 32

18.2 112 134144 32 × 32 16 × 16
10.3 224 134144 32 × 32 16 × 16
5.5 448 134144 32 × 32 16 × 16

Table 1: This table lists the achieved frame rate at a resolution of
512×512, depending on the number of RSM samples, the number
of indirect illumination evaluations, the first pass image resolution,
and the number of screen space quads. All timings were captured
using a GeForce Quadro FX4000.

The application of deferred shading buffers does not completely de-
couple scene complexity from rendering time. The adaptive refine-
ment of the initial sub-sampling depends on the variation of depth
and normal values and thus from scene complexity.

The computation of indirect illumination only considers a few hun-
dred samples. Thus, in the RSM textured surfaces should be ren-



Figure 6: Ambient occlusion is used to simulate the self-shadowing
for indirect illumination.

dered using filtered versions of the texture map, otherwise the
strongly varying pixel light brightness leads to flickering.

7 Conclusions and Future Work

Our approach extends the concept of shadow maps as done be-
fore with the Translucent Shadow Maps by storing additional data,
mainly normal and flux information, per texel. It offers the pos-
sibility of approximating indirect illumination in dynamic scenes
completely on the GPU. It is perfectly suitable to be combined with
scenes whose static lighting conditions are pre-computed and stored
as lightmaps or vertex-colors. The contribution of dynamic lights
and the resulting indirect illumination from them can be simply
blended additively to the pre-lit scene.

Assuming sufficient or adaptive tessellation of the scene, it is pos-
sible to compute the low-frequency indirect illumination per vertex
instead of a per-pixel computation or interpolation. Modern graph-
ics hardware is able to sample textures during execution of vertex
shaders, which enables us to render these color values into textures
which are then used for final rendering.

Since our method does not handle self-shadowing for the indirect
light, we propose to apply ambient occlusion techniques [Landis
2002] to the rendered models, as shown in Figure 6.

Reflective Shadow Maps can be combined with any soft-shadow al-
gorithm for the direct illumination. When using area light sources,
the flux buffer—rendered for a point light source—cannot capture
penumbra regions. But considering the used approximations, this
point has only small impact.

In principle, RSMs can be extended to non-diffuse reflectors. The
flux buffer would become a material ID buffer. Whenever the flux
of a pixel light is to be computed, the material BRDF must be eval-
uated to compute the flux reflected towards the current receiver.
However, as also noticed in [Tabellion and Lamorlette 2004], this

would require significantly higher sample numbers to avoid strong
artifacts. Although it would be possible to update the sampling
pattern during runtime, since it is stored in shader constants or tex-
tures, dynamic importance sampling would be too expensive for the
interactive GPU implementation.

In the future we would like to implement our method for other types
of light sources. Shadow maps for omni-directional lights can be
stored as cube maps. For these, our technique can work, too, when
using adapted sampling patterns.
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Figure 7: This figure illustrates the impact of screen sub-sampling and filter samples. The number of samples are 112, 224 and 448 for the
left, middle and right column. The screen sub-sampling of 128×128 for the top row, 64×64 for the center and 32×32 for bottom.

Figure 8: On the left, local illumination and shadow mapping is shown. The indirect illumination (center image) is approximated from the
RSM and combined to obtain the final image (right).


