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Figure 1. Fairy Forest model: morphological antialiasing improves the quality of the rendered image without having a noticeable impact on performance.

ABSTRACT 

We present a new algorithm that creates plausibly antialiased 
images by looking for certain patterns in an original image and 
then blending colors in the neighborhood of these patterns 
according to a set of simple rules. We construct these rules to work 
as a post-processing step in ray tracing applications, allowing 
approximate, yet fast and robust antialiasing.  The algorithm works 
for any rendering technique and scene complexity.  It does not 
require casting any additional rays and handles all possible effects, 
including reflections and refractions. 
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1 INTRODUCTION 

A human eye has a discrete number of light receptors, yet we do 
not discern any pixels, even in peripheral vision. What is even 
more amazing is that the number of color-sensitive cones in the 
human retina differs dramatically among people – by up to 40 
times [Hofer et al. 2005]. In spite of this, people appear to perceive 
colors the same way – we essentially see with our brains. The 
human vision system also has an ability to ascertain alignment of 
objects at a fraction of a cone width (hyperacuity). This explains 
why spatial aliasing artifacts are more noticeable than color errors. 
Realizing this fact, graphics hardware vendors put significant 
efforts in compensating for aliasing artifacts by trading color 
accuracy for spatial continuity. Multiple techniques are supported 
in hardware, based on mixing weighted color samples, similar to 
the integrating property of digital cameras [ATI; NVIDIA]. 
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Of course, any aliasing artifact will eventually disappear with an 
increase in display resolution and sampling rates. It can also be 
handled at lower resolutions, by computing and averaging multiple 
samples per pixel. Still, for ray tracing algorithms this might not be 
very practical, dramatically decreasing overall performance by 
computing color samples that are eventually discarded through 
averaging. Whitted [1980] was the first who proposed to minimize 
the number of additional rays by casting more rays only if 
neighboring pixels have a significant color variation. Modification 
of this adaptive technique is based on comparing distance-related 
terms instead of color [Keller 1998], which is better suited for 
models with high-frequency textures. Other researchers were 
estimating color variance inside a pixel, by tracing beams 
[Heckbert and Hanrahan 1984], cones [Amanatides 1984], pencils 
[Shinya et al. 1989], bounds [Ohta and Maekawa 1990], covers 
[Thomas et al. 1989], or pyramidal rays [Genetti et al. 1998]. 
Mostly, researchers were trying to improve still images, but there 
were also efforts to utilize – and improve – the temporal coherence 
[Martin et al. 2002]. 
Another line of research is based on an observation that color 
discontinuities are usually most noticeable at silhouette 
boundaries. For rasterization-based rendering, it is possible to 
draw wide prefiltered lines at object silhouettes [Chan and Durand 
2005], which are composited into final image using alpha-
blending. To avoid blurriness due to the blending,  [Sander et al. 
2001] proposed eliminating jagged edges by overdrawing such 
edges as antialiased lines. The ray tracing implementation, 
described by Bala et al. [2003], constrains color interpolation by 
discontinuity edges, found by projecting silhouettes onto image 
plane. 
Among the advantages of algorithms which use object silhouettes 
is that such algorithms provide a way to reliably find 
discontinuities inside pixels. These discontinuities could be missed 
by adaptive techniques that initially cast a single ray per pixel. At 
the same time, discontinuities due to different materials will not be 
found through silhouette tracing.  This might result in artifacts 
unless additional processing is implemented. Furthermore, 
silhouette-based techniques cannot remove aliasing in reflections or 
refractions, as these algorithms require a single center of projection 
(camera or light source) to determine what a silhouette is. 



Handling of pixel-size features in a scene is not a trivial problem, 
even if such features could be reliably identified. If a large number 
of primitives are projected onto a single pixel, integrating color 
over these primitives in many cases will yield some average 
grayish color. The same effect can be approximated by averaging 
single color samples obtained for neighboring pixels or using fog 
or haze-like effects. This resembles Leonardo da Vinci's sfumato 
painting technique, who described it as “without lines or borders, 
in the manner of smoke or beyond the focus plane” [Earls 1987]. 
In this paper, we propose a new antialiasing algorithm which is 
based on recognizing certain patterns in an image. We took our 
inspiration in computer vision algorithms, in particular based on 
morphological image analysis [Soille and Rivest 1993]. Once these 
patterns are found, we blend colors around these patterns, aiming 
at achieving the most probable a posteriori estimation. As such, 
this new approach aspires to simulate human vision processing. 
Morphological antialiasing (MLAA) has a set of unique characte-
ristics distinguishing it from other algorithms. It is completely 
independent from the rendering pipeline. In effect, it can be used 
for both rasterization and ray tracing applications, even though we 
consider it naturally aligned with ray tracing algorithms, for which 
there is no hardware acceleration available. It represents a single 
post-processing kernel, which can be used in any ray tracing 
application without any modifications and, in fact, can be imple-
mented on the GPU even if the main algorithm runs on the CPU. 
MLAA, even in its current un-optimized implementation, is 
reasonably fast, processing about 20M pixels per second on a 
single 3GHz core.  It is embarrassingly parallel and on a multi-
core machine can be used to achieve better load balancing by 
processing the final output image in idle threads (either ones that 
finish rendering or ones that finish building their part of 
acceleration structure). Even though ray tracing rendering is highly 
parallelizable as such, creating or updating accelerating structures 
for dynamic models has certain scalability issues [Wald et al. 
2007]. MLAA is well positioned to use these underutilized cycles 
to achieve zero impact on overall performance. 
Among the chief shortcomings of the proposed algorithm is its 
inability to handle features smaller than the Nyquist limit. This is 
similar to all other techniques that rely on a single sample per pixel 
to find features inside an image. We discuss this problem at length 
in section 3 and also propose a palliative solution which aims at 
reducing these under-sampling artifacts.  

2 MORPHOLOGICAL ANTIALIASING 

MLAA is designed to reduce aliasing artifacts in displayed images 
without casting any additional rays. It consists of three main steps: 

1. Find discontinuities between pixels in a given image. 
2. Identify predefined patterns. 
3. Blend colors in the neighborhood of these patterns. 

For the sake of simplicity, we first describe the MLAA technique 
for (binary) black-and-white images, for which these three steps 
are trivial, and generalize it for color images later on. 
2.1 BLENDING HARD SHADOWS 
The practical application for black-and-white implementation of 
MLAA is antialiasing of hard shadows. As such, it is close to 
shadow silhouette maps [Sen and Cammarano 2003], which allow 
constructing a piecewise-linear approximation to the true shadow. 
The main difference is that our implementation is always pixel-
accurate, as it approximates ray traced shadow rays (see also 
discussion at the end of this section). 
Figure 2 shows a sample black-and-white image on the left. 
Informally, we would like to create a piecewise-linear 

approximation of borders between black and white pixels (shown 
as red contour) in order to obtain antialiased image on the right. 
We will use a chess notation for pixels on this picture: the top-left 
pixel will be a8 and so on. Suffices l, r, t, and b will define edges 
of a particular pixel, so the right edge of a8 is a8r, its bottom edge 
is a8b, etc. A single edge can have up to two different tags (a8b = 
a7t). A simple shorthand notation will also be used for groups of 
pixels, e.g. {cd}4 for {c4,d4}. 
At the first step of the algorithm, we search for all lines sepa-
rating black pixels on one side and white pixels on another, 
keeping the longest ones. It is achieved by comparing each two 
adjacent rows and two adjacent columns. As an example, for rows 
4 and 5 we will find a single separation line {c4u,d4u,e4u}, while 
columns g and h will have 2 different separation lines g3r and g7r. 
We will also assume that border pixels are extended into additional 
imaginary rows and columns, so pixel c9 will be black and so on. 
Each separation line is defined by its two farthest vertices. 
At the second step of the algorithm, we look for other separation 
lines which are orthogonal to the current one at its farthest 
vertices. Most separation lines will have two orthogonal lines, with 
an exception of lines originating at image edges. This observation 
allows us to classify separation lines into the following three 
categories: 
1. A Z-shaped pattern which occurs if two orthogonal lines 

cross both half-planes formed by the current separation 
line. One example is the pattern formed by b5r, {cde}4u, 
e4r on Figure 2.  

2. A U-shaped pattern for which orthogonal lines are on the 
same side, for example  c2r, {de}2b, e2r. 

3. An L-shaped pattern which could only happen if 
separation line originates at image border, for example 
{ab}5t, b5r . 

 (1) 

A single separation line can be a part of multiple patterns (up to 
four). This would happen, for example, if pixel h4 was instead 
black. The algorithm does not take this into consideration and 
immediately processes any pattern, as soon as it is identified. This 
results in a slight blurring, which further dampens down 
unwarranted high frequencies in the image. Similarly, a single 
pixel can be bounded by multiple separation lines, resulting in 
additional blending for such pixels (e.g. c8 and g7 on Figure 2). 

 
Figure  2. MLAA processing of  a black‐and‐white  image with  some  Z, U, 
and L shapes shown on the original image on the left.  

Z and U shapes can be split into two L-shapes, so it will be 
sufficient to describe processing of L-shapes at the third step of 
the algorithm. We consider each L-shape to be formed by a 
primary edge found at the first step, and a secondary edge found at 
the second step. The length of the primary edge is 0.5 pixels or 
more (fraction due to the splitting of Z or U shapes), while each 



secondary edge has length equal to 1 (even if it can be a part of a 
longer separation line, we are interested only in the fragment 
immediately attached to the primary edge). Any L-shape is formed 
by the three vertices. In order to find blending weights, we connect 
the middle point of the secondary edge with the remaining vertex 
of the primary edge (shown as the red line on Figure 3  ). 

 
Figure 3. Computing blending weights. L‐shape is formed by the secondary 

edge v0 v1  which is split in the middle, and the primary  edge  v1  v2. Blending 
weights are computed as trapezoid areas. 

This connection line splits each cell attached to L-shape into two 
trapezoids. We calculate the area  of each trapezoid attached to 
the primary edge and use it to compute new color of these cells as 
follows: 

௡௘௪ ௢௟ௗ ௢௣௣௢௦௜௧௘ (2) 

Here ௢௟ௗ is the old color of the cell, and ௢௣௣௢௦௜௧௘ is the color of 
the cell on the opposite side of the primary edge (assigning 0 to 
black and 1 to white colors). In particular, for the cell c5,          

1/3. Its new color will be computed as 
. Similarly, cell d5 will have its new color equal to 

 (almost white). 
It is important to note that this one-size-fits-all approach 
(secondary edges are always split in half) creates a systematic 
error in area and color estimation. However, variance is reduced, 
resulting in smoother, better-looking image (see Figure 7 for 
further considerations). 
Applied to hard shadows, black-and-white version of MLAA 
infers piecewise-linear approximation of a shadow silhouette from 
an image data. This makes it different from the silhouette maps 
[Sen and Cammarano 2003], in which the silhouette edges are 
identified using any of the techniques for shadow volumes (at a 
preliminary stage of the algorithm). By itself, it results in better 
approximation of the silhouette than using sampled image data 
alone. The accuracy of approximation, arguably, might suffer 
though at the second stage of the silhouette map algorithm when 
the silhouette edges are rasterized into the silhouette map at a 
resolution different from one of the final image. Both algorithms 
will exhibit artifacts when multiple disjoint silhouette edges are 
projected onto either single pixel (MLAA) or texel (the silhouette 
maps). Sen [2004] aimed at reducing these artifacts at a pre-
processing step by storing boundary status, and  also extending the 
base technique to RGB color values, suitable for the improved 
texture magnification. 
2.2 PROCESSING COLOR IMAGES 
Processing color images requires certain adjustments in basic 
MLAA steps. Though challenging, it also opens an opportunity to 
use additional data to fine-tune the algorithm and avoid the one-
size-fits-all situation described at the end of the previous section. 
2.2.1 DISCONTINUITIES IN COLOR IMAGE 
To find discontinuities in an image, one can rely either on 
differences in color between neighboring pixels or on some 
additional information, geometric or discrete (different materials). 
The biggest advantage of the first approach (using color) is that 
this approach does not process pixels with similar color, thus 
avoiding extra work that would likely not change the color of these 

pixels in any meaningful way. On the downside, this approach 
may also trigger superfluous processing of pixels that get 
significant difference in color only through texture mapping. 
MLAA as such can be used with any method that tells whether two 
pixels are different. For the remainder of this paper, we will use a 
threshold-based color differences without any additional 
information, because this approach is the most simple and 
universal one. Since MLAA does not cast any additional rays, it 
mitigates performance impediments caused by choosing low 
threshold value.  We will also use an additional rule to decide 
when to actually blend pixels, as will be shown in the next section. 
In all results, presented in this paper, we use only the 4 most 
significant bits as a similarity measure for each 8-bit red, green, 
and blue channel  (this is comparable with DXT1 texture 
compression, in which all texels that have the same 5 leading bits 
are considered equal). If there is a difference in these bits in either 
channel, two colors are assumed to be different. Using either 3, 5, 
or 6 bits does not change results in any significant way, though for 
some images 3 bits are not sufficient to find all aliased pixels that 
are visible by a human eye.  
2.2.2 PATTERN SEARCH 
We will start deriving rules for searching patterns in color images 
by noticing that the color blending expression (2) does not depend 
on numerical values for black (0) and white (1) colors. It could be 
used for RGBA colors as well, separately for each channel. For 
black-and-white (B&W) images, colors computed according to 
this equation are changing smoothly when different Z, U, or L 
shapes are adjacent to each other. It is a consequence of using 
middle points of the secondary edges as it defines continuous 
piecewise-linear approximation of silhouette edges. For color 
images, we will relax this restriction, but will still require 
continuous silhouette approximation. 

 
Figure 4. Stitching  two shapes  together. We choose unknown heights hc 
and hd to minimize  color differences at stitching position. 

Figure 4 shows two adjacent Z-shapes formed, in this particular 
case, by a linear silhouette edge. Colors of all pixels below the red 
separation line are similar (or the same for B&W images), as well 
as colors of pixels above the red line. For B&W images, 

 and , where  is the length of the Z-shape. The 
ratio  characterizes the relation between the two trapezoid bases, 
and the trapezoid's area is the average of its two bases. If the 
lengths of two connected shapes are the same, then two blue 
(bigger) trapezoids are congruent, as are the two yellow (smaller) 
trapezoids. We will use cell names to represent their colors. To 
state the requirements for smooth transition between two shapes, 
we compute the same blended color twice, using parameters of 
each shape: 

 

1  
(3) 

For  images  with  c1  d2  (two pixels below the red line)  and   
c2  d3 (above), the first equation is simplified to . The 
solution is , which is in the perfect agreement with 



B&W version of MLAA. For color images, we would like to solve 
these equations for unknown split variables  and . We will 
need a definition for c1, c2, d2, and d3 variables in these 
equations. One possibility is to solve the equations (3) separately 
for each channel and then average the solution. We adopted 
another, simpler, approach by summing all three red, green, and 
blue values to form a single numerical value, representing a given 
pixel. To avoid mixing integer and float values, for the CPU 
version of MLAA we did not assign different weights to different 
channels, deferring more advanced luminance processing until 
GPU implementation. These aggregate values are used only to find 
split values  and , color blending will be done separately for 
each channel. 
To find patterns which result in smooth color blending, we will 
test all possible candidates (shapes bounded by color 
discontinuities) by solving linear equations (3). If the found values 
of  and  are in the [0,  1]  interval, we process the tested 
shape, otherwise ignore it. There still could be a situation, when 
one separation line forms multiple valid patterns, especially in 
textured areas. For simplicity, we process only the first found 
shape of a certain kind (two possible Z-shapes and two U-shapes) 
and then move on. 
By providing an additional criterion for accepting or rejecting 
tested patterns, we avoid unnecessary computations due to setting 
the color discontinuity threshold too low. Moreover, we assure 
smooth transition between connected shapes. 
2.3 TEXTURES 
By design, we are not paying any particular attention to textures, 
considering them as an integral part of a given image. For textures 
with big color differences between neighboring pixels, this will 
result in blending of these pixels. Perhaps, this should have been 
done in the first place by using mipmapping. In any case, it does 
not affect the output image adversely.  
Figure 9 shows morphological antialiasing of the Edgar model, 
which is a part of the digital content provided with the 3D Poser 
editor from Smith Micro. On the three bottom images, processed 
pixels are shown with a different color. When the figure is viewed 
from a distance (left image), pixels in Edgar’s tie have significant 
discontinuities and are chosen for MLAA processing. This does 
not adversely affect the quality of the output image (top right) and 
is roughly equivalent to mipmapping of the corresponding texels. 
When zooming in on the model (bottom middle and right), the 
number of processed pixels  decreases as texel interpolation kicks 
in. At any distance to the model, no pixels corresponding to 
Edgar’s shirt are chosen for blending, despite the high-frequency 
texture which is used for it.  
2.4 OPTIMIZATION 
The first step of MLAA (searching for color discontinuities) is 
executed for every pixel. Fortunately, it allows efficient SSE® 
implementation. By using 8 bits for color channel, each RGBA 
color requires 32 bits, so 4 RGBA pixels will fit into one SSE 
register. The next C++ code fragment shows our implementation 
of ssedif() function, which compares 4 RGBA values using SSE2 
instruction set: 
#define most_significant_color_bits  char(0xff ^ ((1<<4) - 1)) 
unsigned short int ssedif(const  __m128i&  c0,  const  __m128i&  c1)  { 
     // return 16 bits set to 1 for each channel where c0,c1 are different. 
     __m128i hibits = _mm_set1_epi8(most_significant_color_bits); 
     __m128i d = _mm_sub_epi8(_mm_max_epu8(c0, c1),  
                                                      _mm_min_epu8 (c0, c1)); 
     d = _mm_and_si128(d, hibits); 
     d = _mm_cmpeq_epi8(d, _mm_setzero_si128()); 
     return 0xffff  ^  _mm_movemask_epi8(d); 
} 

The implementation is pretty straightforward, allowing simul-
taneous processing of sixteen 8-bit values. We compute the 
absolute differences of 4 RGBA colors (variable d), keep only the 
most significant bits, and compare the result with 0. Note that we 
cannot compare the variable d directly with a threshold value since 
there are no comparison operations for unsigned 8-bit values in 
SSE® set. If an arbitrary threshold is required, this function could 
be easily re-implemented with available instructions, albeit less 
efficiently. 
We use this function for finding discontinuities between each two 
adjacent rows and each two columns in the original image. Since 
pixels are stored in a framebuffer row-wise, accessing 4 colors in a 
row (sixteen 8-bit channels) can be achieved with one 
_mm_load_si128 instruction. For columns, we use 
_MM_TRANSPOSE4_PS  macro [Intel] to convert data into SSE-
friendly format. 
We did not try to implement other MLAA steps using SSE® ins-
tructions (though it might be possible to do it using SSE4 
operations), opting instead for preserving the universal nature of 
the algorithm. The upcoming Larrabee chip [Seiler et al. 2008], as 
well as modern GPU cards, are capable of handling 8-bit data 
extremely efficiently, so our algorithm will benefit from porting to 
these architectures. 

 

Figure 5.  A model consisting of 100 elongated quads (no texturing). 

3 MLAA LIMITATIONS 

Arguably the biggest MLAA limitation is its inability to handle 
pixel-size features. This problem is illustrated in Figure 5, which 
shows 100 elongated quads at a resolution of 1024x512 pixels. 
MLAA takes the aliased image shown on the top and produces the 
one in the middle. Despite being very narrow, quads, which are 
closer to the camera, span multiple pixels. For these quads, MLAA 
is working just fine, removing higher frequencies from the image. 
Closer to the top of the image though, there are no identifiable 



features, resulting in moiré pattern, which is a typical example of 
geometrical aliasing. Similarly, if presented with unfiltered 
texture, MLAA will try to remove higher frequencies where 
possible and then give up. Of course, textures could be reliably 
filtered with mipmapping. 
Geometrical aliasing could happen not only for very small or thin 
objects, but also when just few rays penetrate space between 
bigger objects. Another type of aliasing, which is characteristic for 
ray tracing applications, may happen when shading normals are 
used. Indeed, when an angle between incoming rays and 
geometrical normal is close to  /2, for shading normals the angle 
could become bigger than  /2, causing reflected rays to go in 
wrong direction (inside the object). This usually happens just for 
few pixels resulting in an aliasing effect. 
Isolated pixels are naturally blended with neighboring ones after 
MLAA pass, since these pixels belong to multiple shapes. It is 
even possible to identify all such pixels or small groups of pixels 
and then apply additional blending to them. However, this will not 
help for certain moiré patterns, for which aliased images appear to 
have some structure (caused by interference of multiple 
frequencies). 
A somewhat less noticeable drawback of MLAA is its handling of 
border pixels, for which no full information about neighborhood is 
available. This is similar to all adaptive techniques that rely on a 
single sample per pixel. Another type of problem is specific for 
MLAA.  Because MLAA uses only image data for the 
reconstruction, very slowly changing scenes might produce non-
smooth transition between frames. Images at different time steps 
might have identical sets of morphological shapes if camera or 
objects are moving at sub-pixel speed (see discussion related to 
Figure 7). In practice, it is not perceptible if the output resolution 
is higher than 200x200 pixels. For color images, even if two 
images have identical sets of shapes, MLAA output might be 
different, since interpolation coefficients depend on color values, 
to certain degree allowing reconstruction of sub-pixel motion. 
MLAA processing of text could result in additional distortion, 
since MLAA does not distinguish between foreground and 
background. It is especially noticeable if original font was already 
antialiased (see Figure 6). 

Figure 6. Top row: bitmap  font; second row: TrueType  font  (antialiased), 
third row: MLAA processing of bitmap font; fourth row: MLAA processing 
of TrueType font. Font size from left to right: 24, 12, 8, and 6. 

4 COMPARISON WITH SUPERSAMPLING 

To understand similarities and differences between MLAA and 
other antialiasing techniques, we created a very simple example by 
rendering a model consisting of a single half-plane. Figure 7 shows 
six pixels separating white (top) and black (bottom) areas. 

We compute pixel coverage analytically (black line on the top 
chart) and compare it with MLAA (blue) and two supersampling 
approaches, using 4 and 16 samples per pixel. All techniques 
estimate area with 15% accuracy, while MLAA provides a linear 
estimation, without any unwarranted frequencies. At the same 
time, MLAA estimation will be the same for all images in which 
separation line intersects two black arrow-ended intervals on the 
bottom chart. MLAA sacrifices accuracy of local estimation in 
favor of maintaining smoother global silhouette approximation, 
stitching it at different morphological shapes. 

 
Figure 7. Sampling 6 pixels separating black‐and‐white areas (2x2 samples 
per pixel are shown). Bottom image: Z‐shape is bounded by the green line, 
while  red  line  shows  MLAA  reconstruction  of  “true”  silhouette  edge. 
MLAA  reconstruction will  be  the  same  for  all  “true”  curves  intersecting 
two black arrow‐ended intervals. 

On Figure 8, the half-plane silhouette is almost horizontal, 
straddling 24 pixels per Z-shape. For this view, 2x2 sampling 
results in significant errors in area estimation. For MLAA, actually 
the opposite is true since a longer Z-shape allows for smaller 
variability in the true image. Accordingly, to match MLAA 
quality, 8x8 sampling is required. These examples also illustrate 
the well-known fact that uniform sampling is not the best approach 
to reduce variance [Laine and Aila 2006], and supersampling or 
adaptive antialiasing techniques would benefit from using different 
sampling patterns. While very common in global illumination 
algorithms, low variance sampling patterns are rarely used for 
antialiasing in ray tracing applications (though it is a common 
practice in hardware-accelerated rasterization). One early example 
of using stochastic sampling, particularly for ray tracing, is given 
in [Dippe and Wold 1985]. 

 

Figure 8. Sampling 24 pixels.  



5 SUMMARY AND FUTURE WORK 

We have proposed a new approach to antialiasing based on 
searching for certain shapes in images and processing pixels 
adjacent to these shapes according to a set of simple rules. This 
removes artificial high frequencies due to a discrete sampling. The 
new approach has unique characteristics that, we hope, will make 
it worthwhile considering, along with other algorithms: 

 MLAA can be used for any image processing task and does 
not use any data besides color values. It is very simple and 
does not require any modifications to the rendering pipeline. 
It does not need casting any additional rays. 

 The algorithm is embarrassingly parallel and can be executed 
concurrently with rendering threads (using double buffering), 
allowing for better processor utilization. 

 The algorithm achieves reasonable performance, in many 
cases without any noticeable impact. 

 The quality is comparable with supersampling. MLAA has 
very different approximation characteristics, achieving better 
results in situations in which uniform sampling suffers from 
significant errors and undesired frequencies. 

In order to illustrate our technique's universal nature, we have also 
applied it to images from “Call of Duty®: World at War” (see 
Figure 10). There wasn’t any particular reason for choosing this 
game, except that it came free with a new GPU card. We turned 
hardware antialiasing off and ran the game at lower resolution to 
make artifacts visible in printed form. 
If additional information is available (besides color values), 
MLAA could use it to fine-tune the first step (search of discon-
tinuities) or implement additional effects. In particular, we are 
planning to use it for computing approximate soft shadows by 
expanding blended area proportional to a distance to a light source, 
similar to smoothies described in [Chan and Durand 2003]. 
Another possibility is to use our technique to enhance the 
resolution of output images by using constraint interpolation in 
spirit of [Bala et al. 2003], or utilize sub-pixel capabilities of 
modern LCDs. 
We are also interested in using color spaces other than RGB, and 
studying non-linear color comparison and blending techniques. 
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Figure 9. Processing textures for the Edgar model:  (a) – original aliased image; (d) – antialiased image, processed with MLAA; (b,c) – enlarged regions of 

left and right images;  (e,f,g) – visualization of pixels processed with MLAA at different zoom levels. Pixels belonging to horizontal shapes are marked with 
green, vertical – with red color. Pixels, which are included into horizontal and vertical shapes simultaneously, are shown as blue. Note that aliased pixels 
(top left) were unintentionally blurred when this paper was created (both in electronic and paper form).



 
Figure 10. A jungle scene from “Call of Duty®: World at War” game. This screenshot was captured at 640x480 resolution with geometric antialiasing 
turned off but texture antialiasing set at best quality. Note that some of the vegetation is implemented with transparent textures and, therefore, 
antialiased in hardware. There are also far‐away billboards. MLAA handles all these cases uniformly by analyzing color discontinuities. 

 


