
Morphological Antialiasing
Alexander Reshetov

Intel Labs

Figure 1. Fairy Forest model: morphological antialiasing improves the quality of the rendered image without having a noticeable impact on performance.

ABSTRACT

We present a new algorithm that creates plausibly antialiased
images by looking for certain patterns in an original image and
then blending colors in the neighborhood of these patterns
according to a set of simple rules. We construct these rules to work
as a post-processing step in ray tracing applications, allowing
approximate, yet fast and robust antialiasing. The algorithm works
for any rendering technique and scene complexity. It does not
require casting any additional rays and handles all possible effects,
including reflections and refractions.
CR Categories: I.4.3 [Computer Graphics]: Image Processing And
Computer Vision — Enhancement

Keywords: antialiasing, image enhancement, morphological analysis,
rendering

1 INTRODUCTION

A human eye has a discrete number of light receptors, yet we do
not discern any pixels, even in peripheral vision. What is even
more amazing is that the number of color-sensitive cones in the
human retina differs dramatically among people – by up to 40
times [Hofer et al. 2005]. In spite of this, people appear to perceive
colors the same way – we essentially see with our brains. The
human vision system also has an ability to ascertain alignment of
objects at a fraction of a cone width (hyperacuity). This explains
why spatial aliasing artifacts are more noticeable than color errors.
Realizing this fact, graphics hardware vendors put significant
efforts in compensating for aliasing artifacts by trading color
accuracy for spatial continuity. Multiple techniques are supported
in hardware, based on mixing weighted color samples, similar to
the integrating property of digital cameras [ATI; NVIDIA].

e‐mail: alexander.reshetov@intel.com

Of course, any aliasing artifact will eventually disappear with an
increase in display resolution and sampling rates. It can also be
handled at lower resolutions, by computing and averaging multiple
samples per pixel. Still, for ray tracing algorithms this might not be
very practical, dramatically decreasing overall performance by
computing color samples that are eventually discarded through
averaging. Whitted [1980] was the first who proposed to minimize
the number of additional rays by casting more rays only if
neighboring pixels have a significant color variation. Modification
of this adaptive technique is based on comparing distance-related
terms instead of color [Keller 1998], which is better suited for
models with high-frequency textures. Other researchers were
estimating color variance inside a pixel, by tracing beams
[Heckbert and Hanrahan 1984], cones [Amanatides 1984], pencils
[Shinya et al. 1989], bounds [Ohta and Maekawa 1990], covers
[Thomas et al. 1989], or pyramidal rays [Genetti et al. 1998].
Mostly, researchers were trying to improve still images, but there
were also efforts to utilize – and improve – the temporal coherence
[Martin et al. 2002].
Another line of research is based on an observation that color
discontinuities are usually most noticeable at silhouette
boundaries. For rasterization-based rendering, it is possible to
draw wide prefiltered lines at object silhouettes [Chan and Durand
2005], which are composited into final image using alpha-
blending. To avoid blurriness due to the blending, [Sander et al.
2001] proposed eliminating jagged edges by overdrawing such
edges as antialiased lines. The ray tracing implementation,
described by Bala et al. [2003], constrains color interpolation by
discontinuity edges, found by projecting silhouettes onto image
plane.
Among the advantages of algorithms which use object silhouettes
is that such algorithms provide a way to reliably find
discontinuities inside pixels. These discontinuities could be missed
by adaptive techniques that initially cast a single ray per pixel. At
the same time, discontinuities due to different materials will not be
found through silhouette tracing. This might result in artifacts
unless additional processing is implemented. Furthermore,
silhouette-based techniques cannot remove aliasing in reflections or
refractions, as these algorithms require a single center of projection
(camera or light source) to determine what a silhouette is.

Handling of pixel-size features in a scene is not a trivial problem,
even if such features could be reliably identified. If a large number
of primitives are projected onto a single pixel, integrating color
over these primitives in many cases will yield some average
grayish color. The same effect can be approximated by averaging
single color samples obtained for neighboring pixels or using fog
or haze-like effects. This resembles Leonardo da Vinci's sfumato
painting technique, who described it as “without lines or borders,
in the manner of smoke or beyond the focus plane” [Earls 1987].
In this paper, we propose a new antialiasing algorithm which is
based on recognizing certain patterns in an image. We took our
inspiration in computer vision algorithms, in particular based on
morphological image analysis [Soille and Rivest 1993]. Once these
patterns are found, we blend colors around these patterns, aiming
at achieving the most probable a posteriori estimation. As such,
this new approach aspires to simulate human vision processing.
Morphological antialiasing (MLAA) has a set of unique characte-
ristics distinguishing it from other algorithms. It is completely
independent from the rendering pipeline. In effect, it can be used
for both rasterization and ray tracing applications, even though we
consider it naturally aligned with ray tracing algorithms, for which
there is no hardware acceleration available. It represents a single
post-processing kernel, which can be used in any ray tracing
application without any modifications and, in fact, can be imple-
mented on the GPU even if the main algorithm runs on the CPU.
MLAA, even in its current un-optimized implementation, is
reasonably fast, processing about 20M pixels per second on a
single 3GHz core. It is embarrassingly parallel and on a multi-
core machine can be used to achieve better load balancing by
processing the final output image in idle threads (either ones that
finish rendering or ones that finish building their part of
acceleration structure). Even though ray tracing rendering is highly
parallelizable as such, creating or updating accelerating structures
for dynamic models has certain scalability issues [Wald et al.
2007]. MLAA is well positioned to use these underutilized cycles
to achieve zero impact on overall performance.
Among the chief shortcomings of the proposed algorithm is its
inability to handle features smaller than the Nyquist limit. This is
similar to all other techniques that rely on a single sample per pixel
to find features inside an image. We discuss this problem at length
in section 3 and also propose a palliative solution which aims at
reducing these under-sampling artifacts.

2 MORPHOLOGICAL ANTIALIASING

MLAA is designed to reduce aliasing artifacts in displayed images
without casting any additional rays. It consists of three main steps:

1. Find discontinuities between pixels in a given image.
2. Identify predefined patterns.
3. Blend colors in the neighborhood of these patterns.

For the sake of simplicity, we first describe the MLAA technique
for (binary) black-and-white images, for which these three steps
are trivial, and generalize it for color images later on.
2.1 BLENDING HARD SHADOWS
The practical application for black-and-white implementation of
MLAA is antialiasing of hard shadows. As such, it is close to
shadow silhouette maps [Sen and Cammarano 2003], which allow
constructing a piecewise-linear approximation to the true shadow.
The main difference is that our implementation is always pixel-
accurate, as it approximates ray traced shadow rays (see also
discussion at the end of this section).
Figure 2 shows a sample black-and-white image on the left.
Informally, we would like to create a piecewise-linear

approximation of borders between black and white pixels (shown
as red contour) in order to obtain antialiased image on the right.
We will use a chess notation for pixels on this picture: the top-left
pixel will be a8 and so on. Suffices l, r, t, and b will define edges
of a particular pixel, so the right edge of a8 is a8r, its bottom edge
is a8b, etc. A single edge can have up to two different tags (a8b =
a7t). A simple shorthand notation will also be used for groups of
pixels, e.g. {cd}4 for {c4,d4}.
At the first step of the algorithm, we search for all lines sepa-
rating black pixels on one side and white pixels on another,
keeping the longest ones. It is achieved by comparing each two
adjacent rows and two adjacent columns. As an example, for rows
4 and 5 we will find a single separation line {c4u,d4u,e4u}, while
columns g and h will have 2 different separation lines g3r and g7r.
We will also assume that border pixels are extended into additional
imaginary rows and columns, so pixel c9 will be black and so on.
Each separation line is defined by its two farthest vertices.
At the second step of the algorithm, we look for other separation
lines which are orthogonal to the current one at its farthest
vertices. Most separation lines will have two orthogonal lines, with
an exception of lines originating at image edges. This observation
allows us to classify separation lines into the following three
categories:
1. A Z-shaped pattern which occurs if two orthogonal lines

cross both half-planes formed by the current separation
line. One example is the pattern formed by b5r, {cde}4u,
e4r on Figure 2.

2. A U-shaped pattern for which orthogonal lines are on the
same side, for example c2r, {de}2b, e2r.

3. An L-shaped pattern which could only happen if
separation line originates at image border, for example
{ab}5t, b5r .

 (1)

A single separation line can be a part of multiple patterns (up to
four). This would happen, for example, if pixel h4 was instead
black. The algorithm does not take this into consideration and
immediately processes any pattern, as soon as it is identified. This
results in a slight blurring, which further dampens down
unwarranted high frequencies in the image. Similarly, a single
pixel can be bounded by multiple separation lines, resulting in
additional blending for such pixels (e.g. c8 and g7 on Figure 2).

Figure 2. MLAA processing of a black‐and‐white image with some Z, U,
and L shapes shown on the original image on the left.

Z and U shapes can be split into two L-shapes, so it will be
sufficient to describe processing of L-shapes at the third step of
the algorithm. We consider each L-shape to be formed by a
primary edge found at the first step, and a secondary edge found at
the second step. The length of the primary edge is 0.5 pixels or
more (fraction due to the splitting of Z or U shapes), while each

secondary edge has length equal to 1 (even if it can be a part of a
longer separation line, we are interested only in the fragment
immediately attached to the primary edge). Any L-shape is formed
by the three vertices. In order to find blending weights, we connect
the middle point of the secondary edge with the remaining vertex
of the primary edge (shown as the red line on Figure 3).

Figure 3. Computing blending weights. L‐shape is formed by the secondary

edge v0 v1 which is split in the middle, and the primary edge v1 v2. Blending
weights are computed as trapezoid areas.

This connection line splits each cell attached to L-shape into two
trapezoids. We calculate the area of each trapezoid attached to
the primary edge and use it to compute new color of these cells as
follows:

௡௘௪ ௢௟ௗ ௢௣௣௢௦௜௧௘ (2)

Here ௢௟ௗ is the old color of the cell, and ௢௣௣௢௦௜௧௘ is the color of
the cell on the opposite side of the primary edge (assigning 0 to
black and 1 to white colors). In particular, for the cell c5,

1/3. Its new color will be computed as
. Similarly, cell d5 will have its new color equal to

 (almost white).
It is important to note that this one-size-fits-all approach
(secondary edges are always split in half) creates a systematic
error in area and color estimation. However, variance is reduced,
resulting in smoother, better-looking image (see Figure 7 for
further considerations).
Applied to hard shadows, black-and-white version of MLAA
infers piecewise-linear approximation of a shadow silhouette from
an image data. This makes it different from the silhouette maps
[Sen and Cammarano 2003], in which the silhouette edges are
identified using any of the techniques for shadow volumes (at a
preliminary stage of the algorithm). By itself, it results in better
approximation of the silhouette than using sampled image data
alone. The accuracy of approximation, arguably, might suffer
though at the second stage of the silhouette map algorithm when
the silhouette edges are rasterized into the silhouette map at a
resolution different from one of the final image. Both algorithms
will exhibit artifacts when multiple disjoint silhouette edges are
projected onto either single pixel (MLAA) or texel (the silhouette
maps). Sen [2004] aimed at reducing these artifacts at a pre-
processing step by storing boundary status, and also extending the
base technique to RGB color values, suitable for the improved
texture magnification.
2.2 PROCESSING COLOR IMAGES
Processing color images requires certain adjustments in basic
MLAA steps. Though challenging, it also opens an opportunity to
use additional data to fine-tune the algorithm and avoid the one-
size-fits-all situation described at the end of the previous section.
2.2.1 DISCONTINUITIES IN COLOR IMAGE
To find discontinuities in an image, one can rely either on
differences in color between neighboring pixels or on some
additional information, geometric or discrete (different materials).
The biggest advantage of the first approach (using color) is that
this approach does not process pixels with similar color, thus
avoiding extra work that would likely not change the color of these

pixels in any meaningful way. On the downside, this approach
may also trigger superfluous processing of pixels that get
significant difference in color only through texture mapping.
MLAA as such can be used with any method that tells whether two
pixels are different. For the remainder of this paper, we will use a
threshold-based color differences without any additional
information, because this approach is the most simple and
universal one. Since MLAA does not cast any additional rays, it
mitigates performance impediments caused by choosing low
threshold value. We will also use an additional rule to decide
when to actually blend pixels, as will be shown in the next section.
In all results, presented in this paper, we use only the 4 most
significant bits as a similarity measure for each 8-bit red, green,
and blue channel (this is comparable with DXT1 texture
compression, in which all texels that have the same 5 leading bits
are considered equal). If there is a difference in these bits in either
channel, two colors are assumed to be different. Using either 3, 5,
or 6 bits does not change results in any significant way, though for
some images 3 bits are not sufficient to find all aliased pixels that
are visible by a human eye.
2.2.2 PATTERN SEARCH
We will start deriving rules for searching patterns in color images
by noticing that the color blending expression (2) does not depend
on numerical values for black (0) and white (1) colors. It could be
used for RGBA colors as well, separately for each channel. For
black-and-white (B&W) images, colors computed according to
this equation are changing smoothly when different Z, U, or L
shapes are adjacent to each other. It is a consequence of using
middle points of the secondary edges as it defines continuous
piecewise-linear approximation of silhouette edges. For color
images, we will relax this restriction, but will still require
continuous silhouette approximation.

Figure 4. Stitching two shapes together. We choose unknown heights hc
and hd to minimize color differences at stitching position.

Figure 4 shows two adjacent Z-shapes formed, in this particular
case, by a linear silhouette edge. Colors of all pixels below the red
separation line are similar (or the same for B&W images), as well
as colors of pixels above the red line. For B&W images,

 and , where is the length of the Z-shape. The
ratio characterizes the relation between the two trapezoid bases,
and the trapezoid's area is the average of its two bases. If the
lengths of two connected shapes are the same, then two blue
(bigger) trapezoids are congruent, as are the two yellow (smaller)
trapezoids. We will use cell names to represent their colors. To
state the requirements for smooth transition between two shapes,
we compute the same blended color twice, using parameters of
each shape:

1
(3)

For images with c1 d2 (two pixels below the red line) and
c2 d3 (above), the first equation is simplified to . The
solution is , which is in the perfect agreement with

B&W version of MLAA. For color images, we would like to solve
these equations for unknown split variables and . We will
need a definition for c1, c2, d2, and d3 variables in these
equations. One possibility is to solve the equations (3) separately
for each channel and then average the solution. We adopted
another, simpler, approach by summing all three red, green, and
blue values to form a single numerical value, representing a given
pixel. To avoid mixing integer and float values, for the CPU
version of MLAA we did not assign different weights to different
channels, deferring more advanced luminance processing until
GPU implementation. These aggregate values are used only to find
split values and , color blending will be done separately for
each channel.
To find patterns which result in smooth color blending, we will
test all possible candidates (shapes bounded by color
discontinuities) by solving linear equations (3). If the found values
of and are in the [0, 1] interval, we process the tested
shape, otherwise ignore it. There still could be a situation, when
one separation line forms multiple valid patterns, especially in
textured areas. For simplicity, we process only the first found
shape of a certain kind (two possible Z-shapes and two U-shapes)
and then move on.
By providing an additional criterion for accepting or rejecting
tested patterns, we avoid unnecessary computations due to setting
the color discontinuity threshold too low. Moreover, we assure
smooth transition between connected shapes.
2.3 TEXTURES
By design, we are not paying any particular attention to textures,
considering them as an integral part of a given image. For textures
with big color differences between neighboring pixels, this will
result in blending of these pixels. Perhaps, this should have been
done in the first place by using mipmapping. In any case, it does
not affect the output image adversely.
Figure 9 shows morphological antialiasing of the Edgar model,
which is a part of the digital content provided with the 3D Poser
editor from Smith Micro. On the three bottom images, processed
pixels are shown with a different color. When the figure is viewed
from a distance (left image), pixels in Edgar’s tie have significant
discontinuities and are chosen for MLAA processing. This does
not adversely affect the quality of the output image (top right) and
is roughly equivalent to mipmapping of the corresponding texels.
When zooming in on the model (bottom middle and right), the
number of processed pixels decreases as texel interpolation kicks
in. At any distance to the model, no pixels corresponding to
Edgar’s shirt are chosen for blending, despite the high-frequency
texture which is used for it.
2.4 OPTIMIZATION
The first step of MLAA (searching for color discontinuities) is
executed for every pixel. Fortunately, it allows efficient SSE®
implementation. By using 8 bits for color channel, each RGBA
color requires 32 bits, so 4 RGBA pixels will fit into one SSE
register. The next C++ code fragment shows our implementation
of ssedif() function, which compares 4 RGBA values using SSE2
instruction set:
#define most_significant_color_bits char(0xff ^ ((1<<4) - 1))
unsigned short int ssedif(const __m128i& c0, const __m128i& c1) {
 // return 16 bits set to 1 for each channel where c0,c1 are different.
 __m128i hibits = _mm_set1_epi8(most_significant_color_bits);
 __m128i d = _mm_sub_epi8(_mm_max_epu8(c0, c1),
 _mm_min_epu8 (c0, c1));
 d = _mm_and_si128(d, hibits);
 d = _mm_cmpeq_epi8(d, _mm_setzero_si128());
 return 0xffff ^ _mm_movemask_epi8(d);
}

The implementation is pretty straightforward, allowing simul-
taneous processing of sixteen 8-bit values. We compute the
absolute differences of 4 RGBA colors (variable d), keep only the
most significant bits, and compare the result with 0. Note that we
cannot compare the variable d directly with a threshold value since
there are no comparison operations for unsigned 8-bit values in
SSE® set. If an arbitrary threshold is required, this function could
be easily re-implemented with available instructions, albeit less
efficiently.
We use this function for finding discontinuities between each two
adjacent rows and each two columns in the original image. Since
pixels are stored in a framebuffer row-wise, accessing 4 colors in a
row (sixteen 8-bit channels) can be achieved with one
_mm_load_si128 instruction. For columns, we use
_MM_TRANSPOSE4_PS macro [Intel] to convert data into SSE-
friendly format.
We did not try to implement other MLAA steps using SSE® ins-
tructions (though it might be possible to do it using SSE4
operations), opting instead for preserving the universal nature of
the algorithm. The upcoming Larrabee chip [Seiler et al. 2008], as
well as modern GPU cards, are capable of handling 8-bit data
extremely efficiently, so our algorithm will benefit from porting to
these architectures.

Figure 5. A model consisting of 100 elongated quads (no texturing).

3 MLAA LIMITATIONS

Arguably the biggest MLAA limitation is its inability to handle
pixel-size features. This problem is illustrated in Figure 5, which
shows 100 elongated quads at a resolution of 1024x512 pixels.
MLAA takes the aliased image shown on the top and produces the
one in the middle. Despite being very narrow, quads, which are
closer to the camera, span multiple pixels. For these quads, MLAA
is working just fine, removing higher frequencies from the image.
Closer to the top of the image though, there are no identifiable

features, resulting in moiré pattern, which is a typical example of
geometrical aliasing. Similarly, if presented with unfiltered
texture, MLAA will try to remove higher frequencies where
possible and then give up. Of course, textures could be reliably
filtered with mipmapping.
Geometrical aliasing could happen not only for very small or thin
objects, but also when just few rays penetrate space between
bigger objects. Another type of aliasing, which is characteristic for
ray tracing applications, may happen when shading normals are
used. Indeed, when an angle between incoming rays and
geometrical normal is close to /2, for shading normals the angle
could become bigger than /2, causing reflected rays to go in
wrong direction (inside the object). This usually happens just for
few pixels resulting in an aliasing effect.
Isolated pixels are naturally blended with neighboring ones after
MLAA pass, since these pixels belong to multiple shapes. It is
even possible to identify all such pixels or small groups of pixels
and then apply additional blending to them. However, this will not
help for certain moiré patterns, for which aliased images appear to
have some structure (caused by interference of multiple
frequencies).
A somewhat less noticeable drawback of MLAA is its handling of
border pixels, for which no full information about neighborhood is
available. This is similar to all adaptive techniques that rely on a
single sample per pixel. Another type of problem is specific for
MLAA. Because MLAA uses only image data for the
reconstruction, very slowly changing scenes might produce non-
smooth transition between frames. Images at different time steps
might have identical sets of morphological shapes if camera or
objects are moving at sub-pixel speed (see discussion related to
Figure 7). In practice, it is not perceptible if the output resolution
is higher than 200x200 pixels. For color images, even if two
images have identical sets of shapes, MLAA output might be
different, since interpolation coefficients depend on color values,
to certain degree allowing reconstruction of sub-pixel motion.
MLAA processing of text could result in additional distortion,
since MLAA does not distinguish between foreground and
background. It is especially noticeable if original font was already
antialiased (see Figure 6).

Figure 6. Top row: bitmap font; second row: TrueType font (antialiased),
third row: MLAA processing of bitmap font; fourth row: MLAA processing
of TrueType font. Font size from left to right: 24, 12, 8, and 6.

4 COMPARISON WITH SUPERSAMPLING

To understand similarities and differences between MLAA and
other antialiasing techniques, we created a very simple example by
rendering a model consisting of a single half-plane. Figure 7 shows
six pixels separating white (top) and black (bottom) areas.

We compute pixel coverage analytically (black line on the top
chart) and compare it with MLAA (blue) and two supersampling
approaches, using 4 and 16 samples per pixel. All techniques
estimate area with 15% accuracy, while MLAA provides a linear
estimation, without any unwarranted frequencies. At the same
time, MLAA estimation will be the same for all images in which
separation line intersects two black arrow-ended intervals on the
bottom chart. MLAA sacrifices accuracy of local estimation in
favor of maintaining smoother global silhouette approximation,
stitching it at different morphological shapes.

Figure 7. Sampling 6 pixels separating black‐and‐white areas (2x2 samples
per pixel are shown). Bottom image: Z‐shape is bounded by the green line,
while red line shows MLAA reconstruction of “true” silhouette edge.
MLAA reconstruction will be the same for all “true” curves intersecting
two black arrow‐ended intervals.

On Figure 8, the half-plane silhouette is almost horizontal,
straddling 24 pixels per Z-shape. For this view, 2x2 sampling
results in significant errors in area estimation. For MLAA, actually
the opposite is true since a longer Z-shape allows for smaller
variability in the true image. Accordingly, to match MLAA
quality, 8x8 sampling is required. These examples also illustrate
the well-known fact that uniform sampling is not the best approach
to reduce variance [Laine and Aila 2006], and supersampling or
adaptive antialiasing techniques would benefit from using different
sampling patterns. While very common in global illumination
algorithms, low variance sampling patterns are rarely used for
antialiasing in ray tracing applications (though it is a common
practice in hardware-accelerated rasterization). One early example
of using stochastic sampling, particularly for ray tracing, is given
in [Dippe and Wold 1985].

Figure 8. Sampling 24 pixels.

5 SUMMARY AND FUTURE WORK

We have proposed a new approach to antialiasing based on
searching for certain shapes in images and processing pixels
adjacent to these shapes according to a set of simple rules. This
removes artificial high frequencies due to a discrete sampling. The
new approach has unique characteristics that, we hope, will make
it worthwhile considering, along with other algorithms:

 MLAA can be used for any image processing task and does
not use any data besides color values. It is very simple and
does not require any modifications to the rendering pipeline.
It does not need casting any additional rays.

 The algorithm is embarrassingly parallel and can be executed
concurrently with rendering threads (using double buffering),
allowing for better processor utilization.

 The algorithm achieves reasonable performance, in many
cases without any noticeable impact.

 The quality is comparable with supersampling. MLAA has
very different approximation characteristics, achieving better
results in situations in which uniform sampling suffers from
significant errors and undesired frequencies.

In order to illustrate our technique's universal nature, we have also
applied it to images from “Call of Duty®: World at War” (see
Figure 10). There wasn’t any particular reason for choosing this
game, except that it came free with a new GPU card. We turned
hardware antialiasing off and ran the game at lower resolution to
make artifacts visible in printed form.
If additional information is available (besides color values),
MLAA could use it to fine-tune the first step (search of discon-
tinuities) or implement additional effects. In particular, we are
planning to use it for computing approximate soft shadows by
expanding blended area proportional to a distance to a light source,
similar to smoothies described in [Chan and Durand 2003].
Another possibility is to use our technique to enhance the
resolution of output images by using constraint interpolation in
spirit of [Bala et al. 2003], or utilize sub-pixel capabilities of
modern LCDs.
We are also interested in using color spaces other than RGB, and
studying non-linear color comparison and blending techniques.

ACKNOWLEDGEMENTS

The “Fairy Forest” model was created using DAZ 3D Studio.
“Edgar” is a part of digital content of the Poser editor. We are
sincerely grateful to Activision for allowing us to use images from
“Call of Duty®: World at War” game. We gladly acknowledge
Ingo Wald, Carsten Benthin, and Daniel Pohl for many helpful
discussions and proofreading this paper, as well as anonymous
reviewers for their valuable comments.

REFERENCES

AMANATIDES J. 1984. Ray Tracing with Cones. In Computer
Graphics, vol. 18(3), 129-135.

ATI CrossFire™ Technology White Paper,
http://ati.amd.com/technology/crossfire/CrossFireWhitePaperweb2.pdf

BALA K., WALTER B., GREENBERG D. 2003. Combining Edges and
Points for Interactive High-Quality Rendering. ACM Transactions
on Graphics (Proceedings of ACM SIGGRAPH 2003), 22(3), 631-
640.

CHAN E. and DURAND F. 2003. Rendering Fake Soft Shadows With
Smoothies. In Proceedings of the 14th Eurographics workshop on
Rendering, 208-218.

CHAN E. and DURAND F. 2005. Fast Prefiltered Lines. In Matt Pharr,
ed., GPU Gems 2. ISBN 0321335597. Addison-Wesley.

DIPPE M. and WOLD E.H. 1985. Antialiasing Through Stochastic
Sampling. ACM Transactions on Graphics (Proceedings of ACM
SIGGRAPH 1985), 19(3), 69-78.

EARLS I. 1987. Renaissance Art: A Topical Dictionary. ISBN
0313246580. Greenwood Press. 263-263.

GENETTI J., GORDON D., and WILLIAM G. 1998. Adaptive Super-
sampling in Object Space using Pyramidal Rays, Computer
Graphics Forum, vol. 17, 29-54.

HECKBERT P. and HANRAHAN P. 1984. Beam Tracing Polygonal
Objects, In Computer Graphics, vol. 18(3), 119-127.

HOFER H., CARROLL J., NEITZ J., NEITZ M., and WILLIAMS D.R.
2005. Organization of the Human Trichromatic Cone Mosaic. The
Journal of Neuroscience, 25(42), 9669-79.

Intel® C++ Compiler User and Reference Guides,
software.intel.com/en-us/intel-compilers

KELLER A. 1998. Quasi-Monte Carlo Methods for Realistic Image
Synthesis. PhD thesis, University of Kaiserslautern.

LAINE S. and AILA T. 2006. A Weighted Error Metric and Optimization
Method for Antialiasing Patterns. Computer Graphics Forum 25(1),
83-94.

MARTIN W., REINHARD E., SHIRLEY P., PARKER P., and THOMPSON
W. 2002. Temporally Coherent Interactive Ray Tracing. Journal of
Graphics Tools, vol. 2, 41-48.

NVIDIA. Coverage-Sampled Antialiasing,
developer.download.nvidia.com/whitepapers/2007/SDK10/CSAATutorial.pdf

OHTA M. and MAEKAWA M. 1990. Ray-Bound Tracing For Perfect
And Efficient Anti-Aliasing. The Visual Computer, 6(3), 125-133.

SANDER P. V., HOPPE H., SNYDER J. and GORTLER S. J. 2001.
Discontinuity Edge Overdraw. In Proceedings 2001 Symposium on
Interactive 3D Graphics, 167-174.

SEILER L., CARMEAN D., SPRANGLE E., FORSYTH T., ABRASH M.,
DUBEY P., JUNKINS S., LAKE A., SUGERMAN J., CAVIN R.,
ESPASA R., GROCHOWSKI E., JUAN T., and HANRAHAN P. 2008.
Larrabee: A Many-Core x86 Architecture For Visual Computing.
In ACM Transactions on Graphics (Proceedings of ACM
SIGGRAPH 2008), 27(3), 1-15.

SEN P. and CAMMARANO M. 2003. Shadow Silhouette Maps. In ACM
Transactions on Graphics (Proceedings of ACM SIGGRAPH
2003), 22(3), 521-526.

SEN P. 2004. Silhouette Maps For Improved Texture Magnification.
Graphics Hardware (Proceedings of ACM SIGGRAPH/EURO-
GRAPHICS 2004), 65-73.

SHINYA M., TAKAHASHI T., and NAITO S. 1987. Principles and Appli-
cations of Pencil Tracing, In Computer Graphics, vol. 21(4), 45-54.

SOILLE P. and RIVEST J.-F. 1993. Principles And Applications Of
Morphological Image Analysis. ISBN 0646128450.

THOMAS D., NETRAVALI A.N., and FOX D.S. 1989. Anti-aliased Ray
Tracing with Covers, Computer Graphics Forum, vol. 8(4), 325-
336.

WALD I., MARK W., GÜNTHER J., BOULOS S., IZE T., HUNT W.,
PARKER S.G., and SHIRLEY P. 2007. State of the Art in Ray
Tracing Animated Scenes. Eurographics 2007 State of the Art
Reports, 89-116.

WHITTED T. 1980. An Improved Illumination Model for Shaded
Display, Commun. ACM, vol. 23(6), 343-349.

Figure 9. Processing textures for the Edgar model: (a) – original aliased image; (d) – antialiased image, processed with MLAA; (b,c) – enlarged regions of

left and right images; (e,f,g) – visualization of pixels processed with MLAA at different zoom levels. Pixels belonging to horizontal shapes are marked with
green, vertical – with red color. Pixels, which are included into horizontal and vertical shapes simultaneously, are shown as blue. Note that aliased pixels
(top left) were unintentionally blurred when this paper was created (both in electronic and paper form).

Figure 10. A jungle scene from “Call of Duty®: World at War” game. This screenshot was captured at 640x480 resolution with geometric antialiasing
turned off but texture antialiasing set at best quality. Note that some of the vegetation is implemented with transparent textures and, therefore,
antialiased in hardware. There are also far‐away billboards. MLAA handles all these cases uniformly by analyzing color discontinuities.

