

Real-time Atmospheric
Effects in Games Revisited

Carsten Wenzel

The deal

Follow up to a talk I gave at SIGGRAPH
2006
Covers material presented at the time
plus recent additions and improvements

Overview

Introduction
Scene depth based rendering
Atmospheric effects breakdown

Sky light rendering
Fog approaches
Soft particles
Cloud rendering (updated/new)
Volumetric lightning approximation
River and Ocean rendering (updated/new)

Scene depth based rendering and MSAA (new)
Conclusions

Introduction

Atmospheric effects are important cues
of realism (especially outdoors)
Why…

Create sense of depth
Increase level of immersion

Motivation

Atmospheric effects are mathematically
complex (so far usually coarsely
approximated if any)
Programmability and power of today’s
GPUs allow implementation of
sophisticated models
How to can these be mapped efficiently?

Related Work

Deferred Shading (Hargreaves 2004)
Atmospheric Scattering (Nishita et al
1993)
Cloud Rendering (Wang 2003)
Real-time Atmospheric Effects in Games
(Wenzel 2006)

Scene Depth Based Rendering:
Motivation

Many atmospheric effects require accessing
scene depth
Similar to Deferred Shading [Hargreaves04]
Mixes well with traditional style rendering

Deferred shading is not a must!
Think of it as writing a pixel shader with scene
depth available

Requires laying out scene depth first and
making it available to following rendering passes

Scene Depth Based Rendering:
Benefits

Decouple rendering of opaque scene geometry
and application of other effects

Atmospheric effects
Post-processing
More

Apply complex models while keeping the
shading cost moderate

Features are implemented in separate shaders
Helps avoiding hardware shader limits (can support
older HW)

Scene Depth Based Rendering:
Concerns

Alpha-transparent objects
Only one color / depth value stored
However, per-pixel overdraw due to alpha
transparent objects potentially unbound
Workaround for specific effects needed (will be
mentioned later)

Scene Depth Based Rendering:
API and Hardware Concerns

Usually cannot directly bind Z-Buffer and
reverse map
Write linear eye-space depth to texture
instead
Float format vs. RGBA8
Supporting Multi-Sample Anti-Aliasing is
tricky (more on that later)

Recovering World Space Position
from Depth

Many deferred shading implementations
transform a pixel’s homogenous clip space
coordinate back into world space

3 dp4 or mul/mad instructions

There’s often a simpler / cheaper way
For full screen effects have the distance from the
camera’s position to its four corner points at the far
clipping plane interpolated
Scale the pixel’s normalized linear eye space depth by
the interpolated distance and add the camera position
(one mad instruction)

Sky Light Rendering

Mixed CPU / GPU implementation of
[Nishita93]
Goal: Best quality possible at reasonable
runtime cost

Trading in flexibility of camera movement
Assumptions and constraints:

Camera is always on the ground
Sky infinitely far away around camera
Win: Sky update is view-independent, update
only over time

Solve Mie / Rayleigh in-scattering integral
For 128x64 sample points on the sky
hemisphere solve…

Using the current time of day, sunlight direction,
Mie / Rayleigh scattering coefficients
Store the result in a floating point texture

Distribute computation over several frames
Each update takes several seconds to compute

Sky Light Rendering: CPU

() () () () () ()()∫ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
= −−

−b

a

ac

P

P

PPtPPtH
h

sv eegFKII λλθλλλ ,,0, (1)

Sky Light Rendering: GPU

Map float texture onto sky dome
Problem: low-res texture produces blocky results
even when filtered

Solution: Move application of phase function to GPU (F(θ,g)
in Eq.1)
High frequency details (sun spot) now computed per-pixel

SM3.0/4.0 could solve Eq.1 via pixel shader and
render to texture

Integral is a loop of ~200 asm instructions iterating 32 times
Final execution ~6400 instructions to compute in-scattering
for each sample point on the sky hemisphere

Global Volumetric Fog

Nishita’s model still too expensive to
model fog/aerial perspective
Want to provide an atmosphere model

To apply its effects on arbitrary objects in the
scene

Developed a simpler method to compute
height/distance based fog with
exponential fall-off

Global Volumetric Fog
()()
()

()() ()()

()() ()()dttvf

z

cd

zyx
co

T
zzyyxx

czT

etvF

cd
edddbe

dtdtdotdotdofdttvf

dtotv
bezyxf

z
z

ϖϖ

ϖϖ

ϖϖϖ

∫−

−
−

−

=

⎥
⎦

⎤
⎢
⎣

⎡ −
++=

+++=

+=

=

∫∫
1

,,

,,

222

1

0

f – fog density distribution b – global density
c – height fall-off F – fog density along v

v – view ray from camera (o) to target pos (o+d), t=1

(2)

Global Volumetric Fog:
Shader Implementation

float ComputeVolumetricFog(in float3 cameraToWorldPos)
{

// NOTE: cVolFogHeightDensityAtViewer = exp(-cHeightFalloff *
cViewPos.z);

float fogInt = length(cameraToWorldPos) *
cVolFogHeightDensityAtViewer;

const float cSlopeThreshold = 0.01;
if(abs(cameraToWorldPos.z) > cSlopeThreshold)
{

float t = cHeightFalloff * cameraToWorldPos.z;
fogInt *= (1.0 - exp(-t)) / t;

}

return exp(-cGlobalDensity * fogInt);
}

Eq.2 translated into HLSL…

Combining Sky Light and Fog

Sky is rendered along with scene
geometry
To apply fog…

Draw a full screen quad
Reconstruct each pixel’s world space position
Pass position to volumetric fog formula to
retrieve fog density along view ray
What about fog color?

Combining Sky Light and Fog

Fog color
Average in-scattering samples along the
horizon while building texture
Combine with per-pixel result of phase
function to yield approximate fog color

Use fog color and density to blend
against back buffer

Combining Sky Light and Fog:
Results

*

Fog Volumes

Fog volumes via ray-tracing in the shader
Currently two primitives supported: Box,
Ellipsoid
Generalized form of Global Volumetric Fog

Exhibits same properties (additionally, direction of
height no longer restricted to world space up vector,
gradient can be shifted along height dir)

Ray-trace in object space: Unit box, unit sphere
Transform results back to solve fog integral
Render bounding hull geometry

Front faces if outside, otherwise back faces
For each pixel…

Determine start and end point of view ray to plug into
Eq.2

Fog Volumes

Start point
Either camera pos (if viewer is inside) or ray’s
entry point into fog volume (if viewer is outside)

End point
Either ray’s exit point out of the fog volume or
world space position of pixel depending which
one of the two is closer to the camera

Render fog volumes back to front
Solve fog integral and blend with back
buffer

Fog Volumes

Rendering of fog volumes: Box (top left/right), Ellipsoid (bottom left/right)

Fog and Alpha-Transparent
Objects

Shading of actual object and application of
atmospheric effect can no longer be
decoupled

Need to solve both and combine results in same pass
Global Volumetric Fog

Approximate per vertex
Computation is purely math op based (no lookup
textures required)
Maps well to older HW…

Shader Models 2.x
Shader Model 3.0 for performance reasons / due to lack
of vertex texture fetch (IHV specific)

Fog and Alpha-Transparent
Objects

Fog Volumes
Approximate per object, computed on CPU
Sounds awful but it’s possible when
designers know limitation and how to work
around it

Alpha-Transparent objects shouldn’t become too
big, fog gradient should be rather soft

Compute weighted contribution by
processing all affecting of fog volumes back
to front w.r.t camera

Soft Particles

Simple idea
Instead of rendering a particle as a regular billboard,
treat it as a camera aligned volume
Use per-pixel depth to compute view ray’s travel
distance through volume and use the result to fade out
the particle
Hides jaggies at intersections with other geometry
Some recent publications use a similar idea and treat
particles as spherical volumes

We found a volume box to be sufficient (saves shader
instructions; important as particles are fill-rate hungry)

GS can setup interpolators so point sprites are finally
feasible

Soft Particles: Results

Comparisons shots of particle rendering with soft particles
disabled (left) and enabled (right) *

Clouds Rendering Using Per-
Pixel Depth

Follow approach similar to [Wang03],
Gradient-based lighting
Use scene depth for soft clipping (e.g. rain
clouds around mountains) – similar to Soft
Particles
Added rim lighting based on cloud density

Cloud Shadows
Cloud shadows are cast in
a single full screen pass
Use depth to transform
pixel position into shadow
map space

Distance Clouds

Dynamic sky and pre-baked sky box clouds don’t mix
well
Real 3D cloud imposters can be expensive and are
often not needed
Limited to 2D planes above the camera clouds can be
rendered with volumetric properties
Sample a 2D texture (cloud density) along the view dir

For each sample point sample along the direction to sun
Adjust number of sample along both directions to fit
into shader limits, save fillrate, etc.

Distance Clouds

Use the accumulated density to calc attenuation
and factor in current sun / sky light

Distance Clouds at different times of day *

Volumetric Lightning Using Per-
Pixel Depth

Similar to Global Volumetric Fog
Light is emitted from a point falling off radially

Need to carefully select attenuation
function to be able to integrate it in a
closed form
Can apply this lighting model just like
global volumetric fog

Render a full screen pass

Volumetric Lightning Model
()()

()
()

()() ()()

()()tvF

vuw
vuw

v
vuw

wv

dddi

dtdtdotdotdofdttvf

dtotv

zyxla

izyxf

zyx

T
zzyyxx

T

T

ϖ

ϖϖ

ϖϖϖ

ϖ

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

−

+

++=

+++=

+=

−⋅+
=

∫∫

2

22
222

1

0

2

4
4

arctan
4

2arctan
2

,,

,,1
,,

f – light attenuation function i – source light intensity
l – lightning source pos a – global attenuation control value
v – view ray from camera (o) to target pos (o+d), t=1
F – amount of light gathered along v

(3)

Volumetric Lightning Using Per-
Pixel Depth: Results

*

River shading

Rivers (and water areas in general)
Special fog volume type: Plane
Under water fog rendered as described earlier
(using a simpler uniform density fog model
though)
Shader for water surface enhanced to softly
blend out at riverside (difference between
pixel depth of water surface and previously
stored scene depth)

River shading: Results

River shading –
Screens taken from a hidden section of the E3 2006 demo *

Ocean shading

Very similar to river shading, however…
Underwater part uses more complex
model for light attenuation and in-
scattering
Assume horizontal water plane, uniform
density distribution and light always
falling in top down
Can be described as follows…

Ocean shading

Ocean shading: Results

Underwater view: from ground up (1st row), from
underneath the surface down (2nd row). Same lighting
settings apply. Higher density on the right column. *

Scene depth based rendering and
MSAA

Several problems
Cannot bind multi-sampled RT as texture
Shading per pixel and not per sample

Need to resolve depth RT which
produces wrong values at silhouettes
potentially causes outlines in later
shading steps
Two problems we ran into

Fog
River / Ocean

Scene depth based rendering and
MSAA: Fog

Fog color doesn’t changed drastically for
neighboring pixel while density does
Have fog density computed while laying out
depth (two channel RT)
During volumetric fog full screen pass only
compute fog color and read density from
resolved RT
Averaging density during resolve works
reasonably well compared to depth

Scene depth based rendering and
MSAA: River / Ocean

Shader assumes dest depth > plane depth
(otherwise pixel would have be rejected by z-
test)
With resolved depth RT this cannot be
guaranteed (depends on pixel coverage of
object silhouettes)
Need to enforce original assumption by finding
max depth of current pixel and all neighbors
(direct neighbors suffice)

Scene depth based rendering and
MSAA: Results

Fog full screen pass with MSAA disabled (left) / enabled (right)

River / Ocean shading artifact (left) and fix (right)

Conclusion

Depth Based Rendering offers lot’s of opportunities
Demonstrated several ways of how it is used in
CryEngine2
Integration issues (alpha-transparent geometry, MSAA)

Kualoa Ranch on Hawaii –
Real world photo (left), internal replica rendered with CryEngine2 (right)

References

[Hargreaves04] Shawn Hargreaves, “Deferred
Shading,” Game Developers Conference, D3D
Tutorial Day, March, 2004.
[Nishita93] Tomoyuki Nishita, et al., “Display of the
Earth Taking into Account Atmospheric Scattering,”
In Proceedings of SIGGRAPH 1993, pages 175-182.
[Wang03] Niniane Wang, “Realistic and Fast Cloud
Rendering in Computer Games,” In Proceedings of
SIGGRAPH 2003.
[Wenzel06] Carsten Wenzel, “Real-time Atmospheric
Effects in Games,” SIGGRAPH 2006.

Questions

???

Acknowledgements

Acknowledgements

