
Copyright © 2010 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
SCCG 2010, Budmerice, Slovakia, May 13 – 15, 2010.
© 2010 ACM 978-1-4503-0558-7/10/0005 $10.00

Real-Time Spectral Scattering in Large-Scale Natural Participating Media

Oskar Elek
Faculty of Mathematics and Physics

Charles University in Prague

Petr Kmoch
Faculty of Mathematics and Physics

Charles University in Prague

Figure 1: Examples of the presented method — sequence of the setting Sun, orbital views of the Earth and Venus, and Sun eclipse.

Abstract

Real-time rendering of participating media in nature presents a dif-
ficult problem. The reason is that realistic reproduction of such me-
dia requires a proper physical simulation in all cases. In our work
we focus on real-time rendering of planetary atmospheres and large
areas of water. We first formulate a physically-based model for
simulation of light transport in these environments. This model ac-
counts for all necessary light contributions — direct illumination,
indirect illumination caused by the scattered light and interreflec-
tions between the planetary surface and the atmospheric volume, as
well as reflections from the seabed. We adopt the precomputation
scheme presented in the previous works to precompute the colours
of the arbitrarily dense atmosphere and large-scale water surfaces
into a set of lookup tables. All these computations are fully spec-
tral, which increases the realism. Finally we utilize these tables in
a GPU-based algorithm that is capable of rendering a whole planet
with its atmosphere from all viewpoints above the planetary sur-
face. This approach is capable to achieve hundreds of frames per
second on today’s graphics hardware.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

Keywords: atmospheric and aquatic light scattering, natural phe-
nomena, participating media

1 Introduction

Planetary atmosphere and large areas of water, such as the oceans,
are perhaps the most common participating media around us, as we
know at least the first one from our everyday experience. Thus any

rendering system that strives for realistic display of any general out-
door scene needs to incorporate a believable method for rendering
these. This includes 3D computer games, flight and driving simula-
tions, virtual worlds and even animated movies. Still, applications
like GoogleEarth, NASA WorldWind or for instance SecondLife
use simplistic methods for rendering of the Earth’s atmosphere and
water areas. 3D computer games are more advanced in this direc-
tion, but they still use some combinations of static skyboxes and
substantially simplified physically-based algorithms.

In this paper we present a method for physically-based real-time
rendering of general planetary atmospheres and water bodies. We
build on the methods presented in [Bruneton and Neyret 2008]
and [Elek 2009], which are equivalent — both rely on precomputa-
tion of the scattering data into a set of lookup tables in an incremen-
tal manner (one scattering order at a time). We extend these meth-
ods by precomputing and rendering large aquatic bodies, which can
range from small lakes to oceans. We also generalize the atmo-
spheric model to account for atmospheres with arbitrary density.
Finally, our work is the first to utilize fully spectral scattering data
for these environments in real-time rendering. Fig. 1 shows some
of the results of our work.

Related work is discussed in Section 2. We formulate the physical
model in Section 3 and describe its precomputation in Section 4.
Then we show how to render the precomputed data in Section 5
and after the results and implementation figures in Section 6 we
conclude the paper in Section 7.

2 Related Work

Simulation of planetary atmosphere appearance has been the point
of interest in the field of computer graphics for a long time. The
absence of sufficiently powerful graphics hardware implied that
for long only non-interactive methods were used to display atmo-
spheric light scattering effects.

[Nishita et al. 1993] presented equations for computing single scat-
tering in the Earth’s atmosphere; this model is still widely used
although it does not enable changing the atmosphere’s density.
[Nishita et al. 1996] was based on division of the skydome into
a set of cells and theoretically capable of computing an arbitrary
number of scattering orders, but practically usable only up to the

77

Figure 2: Comparison of single and multiple scattering.

second order, due to computational intensity. A method for display-
ing the sky from the ground was presented in [Haber et al. 2005].
It was based on the simulation of radiative transfer in the body of
the skydome and capable of simulating an arbitrary number of scat-
tering orders. The method also enabled the simulation of a wide
range of atmospheric conditions. However, despite numerous op-
timizations, it remained computationally expensive. A completely
different approach was used in [Preetham et al. 1999], where an an-
alytic solution for calculation of the colour of the Earth’s sky was
presented. However, as pointed out in [Zotti et al. 2007], the model
was behaving incorrectly under some specific conditions and could
even yield negative intensities.

Fully accurate real-time methods for realistic rendering of planetary
atmospheres are still not feasible today. However, by exploiting
graphics hardware’s texturing capabilities and various approxima-
tions, it is now possible to devise a real-time method while keeping
an acceptable quality of its output. All of the following approaches
can render the Earth’s atmosphere in real-time.

[O’Neil 2004] presented an approximative method for rendering the
Earth’s atmosphere based on the model from [Nishita et al. 1993].
O’Neil here suggested usage of 2D lookup tables for storing the
optical depth and predicted that the whole single-scattering integral
should be precomputable into a 3D lookup table. Then in [O’Neil
2005] he took a different direction and presented a set of ad hoc
analytic functions for the atmosphere’s colour, evaluated in vertex
shader. [Wenzel 2006] presented a fast method periodically precal-
culating the single-scattering integral into a 2D texture. Schafhitzel
et al. [Schafhitzel et al. 2007] figured out the way to fully precom-
pute the single-scattering equations into a 3D lookup table. How-
ever, it was found a full parameterization requires a 4D table.

As previously mentioned, [Bruneton and Neyret 2008] and [Elek
2009] presented two equivalent precomputation schemes for multi-
ple atmospheric scattering. Both are based on an incremental com-
putation of the scattering dataset. One scattering order is calculated
at time, always from the data for the previous order. While the first
method uses a full 4D parameterization of the main scattering table,
the second tries to approximate the dimension which corresponds
to sun↔view azimuth by an ad hoc phase function during the real-
time evaluation. We build on these methods by generalizing them
to arbitrarily dense atmospheres and large water bodies.

In the area of real-time rendering of water bodies, research falls into
two categories — generation of surface wave geometry and simula-
tion of light transport in the water volume. As we are not concerned
with wave geometry, we will limit ourselves to the second group.
For a good overview of methods from the first category, please refer
to [Bruneton et al. 2010], who also present a hierarchical represen-
tation of the ocean surface combining geometry, perturbed normals
and a modified BRDF.

As for the second group, there are surprisingly few works that con-
cern themselves with simulation of the light scattering within water

bodies. [Nishita et al. 1993] presented, along with their atmospheric
model, also an analytical expression of the first scattering order in
water in order to render oceans. This has been further developed
by [Iwasaki et al. 2003], where the authors added the computa-
tion of the second scattering order; then they used virtual sampling
planes to render the water volume. However, the derivation of their
equations remains unclear and the data they use are difficult to ob-
tain. [Premoze and Ashikhmin 2000] presented a simplified radia-
tive transfer algorithm, which they used to render various types of
natural waters, for example tropical or muddy water. [Cerezo and
Serón 2002] show how different phytoplankton concentrations in
water influence its appearance. It is important to note however, that
none of these methods runs in real-time (except for [Iwasaki et al.
2003], which reaches interactive framerates).

3 Physical Model

In this section we describe the physical model used in our work,
for sake of completeness. We first present the equations for the
atmospheric computations and then describe the differences when
calculating the optical properties of water.

3.1 Scattering in atmosphere

Scattering coefficient At first we need the amount of light scat-
tered by one air particle. This depends on the Rayleigh and Mie
mean particle polarizability constants αR and αM [Born and Wolf
1999] expressed as

α{R,M} =
2π2(n2

e −1)2

3N2
e{R,M}

(1)

where ne is the index of refraction of the Earth’s atmosphere at
sea level and Ne{R,M} is the Rayleigh/Mie particle molecular number
density in the Earth’s atmosphere at sea level. These are calculated
from measured parameters of the Earth’s atmosphere. From this we
can express the Rayleigh/Mie scattering coefficient σ{R,M} as

σR(λ) = 4π
NR

λ 4 αR σM = 4πNMαM (2)

where N{R,M} denotes molecular number density of Rayleigh/Mie
particles in the desired atmosphere. Note that unlike σR, the co-
efficient σM is λ -independent. This formulation of the scattering
coefficient allows us to simulate atmospheres with arbitrary den-
sity (unlike for instance [Nishita et al. 1993], [Schafhitzel et al.
2007] or [Bruneton and Neyret 2008]). As shown in Figures 1
and 4, this can produce qualitatively different appearances.

Scattering intensity The Rayleigh/Mie scattering intensity of
the first order L(1)

S{R,M}
expresses the amount of light deviated by a

given angle θ during a scattering event at point P (see Fig. 3 for
illustration). It depends on spectral wavelength λ and is expressed
by the following equation:

L(1)
S{R,M}

(λ ,θ ,P) = II(λ) ·F{R,M}(θ) ·ρ{R,M}(P) ·σ{R,M}(λ) (3)

where II is the spectral intensity of direct incident light and
ρ{R,M}(P) = exp(− h

H{R,M}
) is the Rayleigh/Mie density scale func-

tion. This function expresses the decrease of atmospheric density
in dependence on h, the altitude of P over the ground. H{R,M} is

78

P

aP

O

δ
θ

Pbplanet
atmosphere

Pg~

Pc

P'c

P

s

s'

h

N N'

Is
(1)

(k)IG

V

L

L

(k)IA
R

IS

Figure 3: A schematic view of the atmosphere.

the atmospheric Rayleigh/Mie scale height expressing the altitude
where the density of the respective type of particles scales down by
a 1/e term. For the Earth’s atmosphere HR≈ 8km and HM ≈ 1.2km.
F{R,M} is Rayleigh/Mie phase function, which expresses angular
dependence of scattered light intensity on the scattering angle θ :

FR(θ) =
3
4
(1+ cos2(θ)) (4)

FM(θ ,g) =
3(1−g2)
2(2+g2)

(1+ cos2(θ))
(1+g2−2gcos(θ))3/2

(5)

where Eq. 4 is the standard Rayleigh phase function and Eq. 5 is
the improved Henyey-Greenstein approximation of the general Mie
phase function by [Cornette and Shanks 1992]. g ∈ 〈−1;1〉 de-
scribes Mie scattering anisotropy.

Single scattering The single-scattering equation describes the
intensity of light I(1)

S{R,M}
that reaches an observer PO looking in the

direction V (see Fig. 3), after exactly one scattering event:

t(S,λ) = ∑
i∈{R,M}

σi(λ)
∫ S

0
ρi(s′)ds′ (6)

I(1)
S{R,M}

(PO,V,L,λ) = R(PO,V,L,λ)+ II(λ)F{R,M}(θ)· (7)

·
σ{R,M}(λ)

4π

∫ Pb

Pa

ρ{R,M}(P)e−t(PPc,λ)−t(PaP,λ)ds

R(PO,V,L,λ) = ā(λ)(−L ·N′)II(λ)e−t(PgP′c,λ)−t(PaPg,λ) (8)

where L is the direction to the light source and the sample point P is
parameterized by s. Pa and Pb are the first and the last point where
the density of the atmosphere is nonzero (for observer situated in-
side the atmosphere, Pa = PO). Pc is the intersecting point of L with
the upper atmospheric boundary when starting in P. t is the attenua-
tion coefficient in accordance with the Beer-Lambert-Bouguer law.
We add R into Eq. 7 to account for the reflection of incident light
from the planetary surface in the calculation of higher scattering or-
ders. Here, N′ is the surface normal at Pg and ā is the mean albedo
of the planetary surface (we use ā = 0.45). If V intersects the plan-
etary surface, then Pg = Pb, otherwise R = 0.

Multiple scattering Any model which strives for realism must
account for multiple scattering (see Fig. 2). The key to make cal-
culation of multiple scattering possible is to split the formulation of
the radiative transfer equation into terms that will allow us to pre-
compute it. Otherwise, one would have to resort to recursive dis-
tributed Monte-Carlo evaluation, which would have an exponential

computational complexity (in respect to the number of calculated
scattering orders, denoted K).

At first we define a gathered light intensity of kth order I(k)G{R,M}
at

some point in the atmosphere P, an ambient light intensity of kth

order I(k)A{R,M}
at some surface point Pg and a composite ambient light

intensity of kth order A(k)
{R,M} at some observer position PO, in the

view direction V and with the light source direction L as

I(k)G{R,M}
(P,V,L,λ) =

∫
4π

F{R,M}(θ)I(k)S{R,M}
(P,ω,L,λ)dω (9)

I(k)A{R,M}
(Pg,L,λ) =

∫
2π

(N′ ·ω)I(k)S{R,M}
(Pg,ω,L,λ)dω (10)

A(k)
{R,M}(PO,V,L,λ) = ā(λ)I(k)A{R,M}

(Pg,L,λ)e−t(PaPg,λ) (11)

where θ is the scattering angle between V and ω and I(k)S{R,M}
is the

scattered light intensity of kth order. These formulae denote the
amount of light, which has undergone exactly k scattering events,
reflected (in-scattered) into the direction −V at P (Eq. 9), reaching
the point Pg (Eq. 10) and reaching PO from Pg (Eq. 11).

Having all we need we can now define the scattered light intensity
of kth order I(k)S{R,M}

at the observer position PO coming from the di-
rection V as

I(k)S{R,M}
(PO,V,L,λ) = A(k−1)

{R,M}(PO,V,L,λ)+
σ{R,M}(λ)

4π
· (12)

·
∫ Pb

Pa

I(k−1)
G{R,M}

(P,V,L,λ)ρ{R,M}(P)e−t(PaP,λ)ds

where the notation stays similar to Eq. 7. If we now define the total
intensity of the kth order of scattered light as I(k)S = I(k)SR

+ I(k)SM
we

can finally express the total scattering intensity of first K orders as

IS = ∑
K
k=1 I(k)S (13)

3.2 Scattering in water

The calculation of light scattering in water is similar to the calcu-
lation of atmospheric scattering. Most parts of the model stay the
same, only now the volume of the medium is not located between
the upper atmospheric boundary and the planetary surface, but be-
tween the water level and the seabed. Moreover there are also other
specificities that we must account for.

Even though the atmosphere can contain absorbing particles, we
assume in Section 3.1 that it does not (although they can easily
be added by incorporating the absorption coefficient into Eq. 6).
For water this is not possible, as it exhibits significant absorption,
mainly in the red part of the spectrum. To obtain absorption and
scattering coefficients for clear water, ςa and ς s, we use the data
from [Buiteveld et al. 1994], finely sampled at 2nm. Water can also
contain additional organic and inorganic compounds (see Fig. 8).

Another difference to take into account is the fact that water density
is constant. Therefore, we do not need the density scale function
ρ , which can simply be removed from all equations. This greatly
simplifies the matter, for example the attenuation coefficient twater

can now be expressed as

twater(S,λ) = ‖S‖(ςa + ς
s)(λ). (14)

79

Figure 4: Comparison of different densities — atmosphere 10 times
sparser (left) and 10 times denser (right) than the Earth’s one.

From now on, we will indicate the terms defined for water with the
superscript water for distinction.

It can also be noticed that we do not explicitly model Mie scattering
in water. There are two reasons for that. First, the data for Mie scat-
tering coefficient in seawater (pure water does not contain any Mie-
scattering compounds) are not available, as it is already difficult to
obtain the data for the Rayleigh scattering coefficient. Second, as in
most cases the behaviour of Mie scattering is strongly anisotropic
with a dominant forward lobe, it would only have noticeable effect
for an underwater observer looking towards the light source. Since
we account only for observer positions above the water level, we
can neglect Mie scattering in water.

4 Precomputation

4.1 Parameterization

To make the precomputation possible for every observer position
PO, every view direction V and every light source direction L, a
convenient parameterization to fit the scattering data into a 3D tex-
ture readable by the graphics hardware must be defined. To do this,
we follow the ideas from [Schafhitzel et al. 2007; Bruneton and
Neyret 2008] and make some assumptions:

1. The star (light source) is so far away that all light rays from it
can be considered parallel

2. The planet is perfectly spherical (neglecting terrain morphol-
ogy for now)

3. The density of the atmosphere is changing in respect to alti-
tude (ρ{R,M}(P)) but not in respect to latitude and longitude

4. The atmosphere is a spherical shell and is symmetrical around
the plane between L and the zenith vector in PO

Thanks to these assumptions, PO, V and L can be reduced into 4
scalar parameters — altitude h ∈ 〈0;Hmax〉 (where Hmax is the up-
per atmosphere boundary altitude), view↔zenith angle ϑ ∈ 〈0;π〉,
sun↔zenith angle δ ∈ 〈0;π〉 and sun↔view azimuth φ ∈ 〈0;π〉.
We typically use Hmax = 65km (although for denser atmospheres

it may be necessary to use Hmax ≈ 100km or even more). We use
tiling to emulate a 4D table in a 3D texture and manual linear inter-
polation of the 4th dimension during rendering.

Our task is now to remap the parameters of our lookup table h, ϑ ,
δ and φ into the 4D table coordinate space UVWR, i.e. to design a
remapping function f : 〈0;Hmax〉×〈0;π〉3→ 〈0;1〉4:

U(h) = Z1/Z2

V (ϑ) = 1/2+(hcos(ϑ)+
√

Z3)/(2Z1)
if hcos(ϑ) < 0 and Z3 > 0, or otherwise

= 1/2− (hcos(ϑ)−
√

Z3 +Z2
2)/(2Z1 +2Z2)

W (δ) = (1− e−2.8cos(δ)−0.8)/(1− e−3.6)
R(φ) = (1+ cos(φ))/2

with Z1 =
√

h2− r2
P, Z2 =

√
r2
A− r2

P, Z3 = r2 cos2(ϑ)−Z2
1 , rP and

rA being the radii of the planet and the atmospheric shell, respec-
tively. The optimized remapping functions U , V and W are adopted
from [Bruneton and Neyret 2008]. We use a slightly changed W ,
to truly account for all sun angles where the scattering intensity is
nonzero even in denser atmospheres or atmospheres with very high
Hmax, since the original W from [Bruneton and Neyret 2008] was
specifically designed for the Earth’s atmosphere.

For water, the situation is different. Despite the fact that we want to
model only observers above the water level, we still need to calcu-
late light scattering for points inside the water volume, if we want
to model multiple scattering in water (see Section 4.3 for further de-
tails). Moreover, we want to model water for more than one depth
D, as, unlike the upper atmospheric boundary, the depth of water ar-
eas is usually not constant. Adding the three angles to complete the
parameterization, this leaves us with the need of a 5D table to store
the simulation results. Because manipulation with an emulated 5D
table would be complicated and its size would be too large, we need
to get rid of at least one dimension.

We decided to exclude the sun↔view azimuth φ from the param-
eterization of the water texture, because our observations and tests
show that the intensity of scattered light varies negligibly with re-
spect to φ . The reason for this is most probably the strong locality
of light transport in water (visible light which travels 100m in water
retains only 0.6 · 10−20% to 1.5% of its original intensity, depend-
ing on the wavelength) — the areas with different φ are much closer
to each other than in the atmosphere (assuming L stays the same)
and the difference between them is small.

On the plus side, the change of the scattering intensity with respect
to the rest of the parameters is also not as dynamic as in the atmo-
sphere. We therefore do not need any complicated nonlinear pa-
rameterization; a simpler linear parameterization will suffice here:

U(D) = D/Dmax

V (d) = d/D
W (ϑ) = (1+ cos(ϑ))/2
R(δ) = (1+ cos(δ))/2

where Dmax is the peak depth to account for and d is observer depth.
There is no point in using Dmax > 100m, due to the aforementioned
low transmissivity of water (see Fig. 5).

4.2 Precomputing atmospheric scattering

We will now review the precomputation algorithm as presented
in [Bruneton and Neyret 2008] and [Elek 2009]. The formulation

80

Figure 5: Showing the effect of varying water depth with a sandy seabottom. From left to right: water depth of 2m, 4m, 10m and 100m at
noon (top row) and at 4 PM (bottom row). Fisheye camera is used to cover a larger field of view.

of the physical model allows us to precompute multiple scattering
in an incremental manner, one scattering order at the time. At first
the I(1)

S is computed exactly, according to Eq. 7 and the results of
this computation are stored in the lookup table as described in Sec-
tion 4.1. Then we can compute the desired number of higher scat-
tering orders — for calculation of the I(k)S (Eq. 12), we need to ob-

tain A(k) (Eq. 11) and I(k)G (Eq. 9). This can be done in two ways —
either repeatedly computing them directly during the evaluation of
Eq. 12 for I(k)S , or precomputing them into auxiliary lookup tables

in each iteration prior to the calculation of I(k)S ; in either case, the

lookup table for I(k−1)
S is used during the computation. Both ways

are possible, but, despite the first method being more accurate, it is
very convenient to use the precomputed auxiliary textures, as this
is much faster and the actual difference in quality is minimal. We
need a 1D table to store A(k) and a 4D table to store I(k)G . It is even

possible to use a 2D table for I(k)G , neglecting the viewing direction
V — this way, the directional information provided by the phase
function is lost, but the error is still very small, because the integra-
tion over the sphere in Eq. 9 largely averages the phase function.

However, there are some considerations that [Bruneton and Neyret
2008] and [Elek 2009] omit. To complete the computation we must
correct the resulting 4D scattering texture for the light that is re-
flected off the ground. This includes Eqs. 8 and 11, because they
use the mean surface albedo ā that treats the planetary surface as a
homogeneous reflector. That is because during rendering, we want
to account for surfaces with different albedos and reflection char-
acteristics, so we want to remove these contributions from the scat-
tering texture and evaluate them separately at runtime. For this, we
construct a single-purpose correction texture with the exactly same
resolution and parameterization as the main scattering texture and
fill it with correcting light intensity IC{R,M} defined as follows:

IC{R,M}(PO,V,L,λ) = R(PO,V,L,λ)+
K−1

∑
k=1

A(k)
{R,M}(PO,V,L,λ) (15)

Note that IC = 0 if V does not intersect the planet. The correction
is then done by subtracting intensity values of the correction tex-

ture from the main scattering texture on a per-texel basis. For the
complete precomputation procedure please refer to Algorithm 1.

Moreover, it is necessary to consider the fact that while the lim-
ited angular resolution of the 4D scattering table (see Section 6 for
concrete figures) is sufficient for Rayleigh scattering, it is not suffi-
cient for accurate reproduction of Mie scattering, mainly in the ar-
eas where the angle θ between V and L is small, as FM(θ ,g) has a
very high gradient there. To overcome this problem we use the sim-
ilarity theory [Wyman et al. 1989]. During the precomputation pro-
cess we consider Mie scattering to be isotropic (i.e. FM(θ ,g) = 1)
and use the effective scattering coefficient σ ′M defined as

σ
′
M = (1−g)σM . (16)

We then precompute FM(θ ,g) into a small 2D texture and evalu-
ate it in the fragment shader during rendering. This also allows
us to change the anisotropy parameter g in real-time (even though
it is partially hardwired in σ ′M ; still the error is negligible here).
Even though this approach is somehow mathematically incorrect, it
reproduces the effects caused by Mie scattering surprisingly well,
most probably due to the dominance of the first order of Mie scatter-
ing. Arguably, one could use a convolution of multiple FM(θ ,g) for
precomputation into the 2D texture, instead of the FM(θ ,g) alone,
as described in [Riley et al.]. It is also worth mentioning that we
treat ISM as being monochromatic, so it occupies only one channel
in the scattering texture. We then shade it during rendering by mul-
tiplication with the attenuated direct illumination I′I (see Section 4.3
for the definition; alternatively, one could use the proportionality
rule from [Bruneton and Neyret 2008]).

4.3 Precomputing scattering in water

As mentioned in Section 3.2 the physical model stays similar for
water volumes. With some modifications, this also applies for the
precomputation algorithm. It is necessary to use different physical
constants (Section 3.2) and parameterization (Section 4.1) for the
water texture, as well as the formula for the attenuation coefficient
twater (Eq. 14). It is also important to note that the incident light
in all computations of scattering in water no longer has the same

81

Data: n-dimensional textures denoted as TexnD
Result: 4D texture TS containing IS and 1D texture TA

containing IA = ∑
K−1
k=1 I(k)A

begin1
initialize all constants and parameters;2

Tex4D TS compute←− I(1)
S ; // Eq. 73

Tex4D TS∆← TS;4
Tex1D TA← 0;5
Tex1D TA∆← 0;6
Tex4D TG← 0;7
for k← 2 to K do8

TG compute←− I(k−1)
G [TS∆]; // Eq. 99

TA∆

compute←− I(k−1)
A [TS∆]; // Eq. 1010

TS∆

compute←− I(k)S [TG,TA∆]; // Eq. 1211
TS← TS + TS∆;12
TA← TA + TA∆;13

end14

Tex4D TC compute←− IC[TA]; // Eq. 1515
TS← TS − TC;16

end17

Algorithm 1: Pre-computing multiple scattering.

spectral composition as in the computations of atmospheric scatter-
ing, because it always has to pass through the layer of atmosphere,
which attenuates it. The attenuated incident light can be expressed
as I′I(λ) = II(λ)e−t(PgP′c,λ) (see Fig. 3). Another difference from the
atmospheric scattering precomputation is that while the 4D texture
containing the atmospheric colour data is directly utilizable in ren-
dering, the 4D texture containing the water colour data should be
reduced into a 3D texture after the precomputation step. This is be-
cause it contains the data for all possible observer depths, which we
do not need for observer positions above the water surface. There-
fore we use for rendering only the subset of the 4D texture which
corresponds to the observer depth d = 0m. On the other hand, if ob-
servers below the water surface needed to be considered, it would
be possible to use the full 4D texture to render underwater scenes as
well. This would be similar to observers in various altitudes in the
atmosphere — here, the observer depth d would be used to fetch
the water scattering texture (along with the rest of the parameters).

It can be noted that if high accuracy is not a priority, it’s sufficient
to use only the first scattering order in water. The reason for this
is that water is a weakly scattering medium, so most of the water
colour comes from reflection off the seabed. This simplifies and
speeds up the precomputation, as it is now necessary to precompute
the first scattering order only (Lines 2 and 3 in Algorithm 1), and it
also allows us to decrease the dimensionality of the scattering table
for water — we can exclude V (d) from the entire precomputation.

4.4 Spectral precomputation

To accurately simulate light scattering effects and especially multi-
ple scattering, using the RGB space for the simulation is not suffi-
cient (see Fig. 6). Although the involved spectra are not extremely
spiky, they are not linear either (especially the water absorption
spectrum). We therefore use a full spectral computation, result-
ing in smoother, less saturated and thus more natural look of the
atmosphere and water areas. As hardware-compliant textures can
contain 4 colour channels at most, an array of 4D textures must be
used to emulate a spectral texture with an arbitrary amount of spec-

φ φP

A

P

I

g

I
I

IP

N LV

S

I'P

c

a

planet

atmosphere

R

V

V'
R

IS

IS+
water

g(P)

μD

PO~

Figure 7: A scheme illustrating the calculation of the light contri-
butions from the planetary surface.

tral channels. For the simulation with M spectral samples an array
of d(M +1)/4e textures has to be used (‘+1’ for storing ISM).

Upgrading RGB computation to spectral is not so difficult. First,
the constants needed for the simulation have to be spectral, which
is not a problem at most cases, as the available data are often al-
ready sampled at more wavelengths than three. The rest can be
calculated, for instance we obtain the incident light intensity as
blackbody radiation at 5778K, according to Planck’s law (the de-
sired light source temperature can be changed, of course). Second,
the algorithm itself does not change, except that now it is neces-
sary to work with the array of 4D textures. This implies that in-
stead of fetching a single texture, each texture in the array must be
fetched using exactly the same texture coordinates (the same holds
for writing). Last, the conversion from spectral to RGB colour val-
ues must be performed in order to utilize the resulting texture on
graphics hardware. For this we first convert the spectral colour val-
ues to CIE XYZ space using the standard XYZ primaries (available
at http://www.cis.rit.edu/mcsl). This XYZ tristimulus value is then
moved to the gamut of sRGB space and converted to sRGB by mul-
tiplication with an XYZ→sRGB conversion matrix. The result is
then stored in a single 4D texture for use in rendering.

Another important consideration is that even if one chooses to per-
form only RGB precomputation instead of the full spectral one for
some reason, it is not correct to use the obtained scattering values
directly as RGB colour components (even if this produces fairly
good results). This is because the R, G and B components do not
correspond to any concrete values of λ . Instead, such data have to
be treated as spectra with only 3 samples, and the conversion de-
scribed above should be used to obtain usable RGB colour values.

5 Rendering

We do not discuss the rendering of terrain morphology, since this
is not the topic of our work. For the description of how to utilise
the scattering lookup texture precomputed for a perfectly spherical
planet in a terrain renderer, please refer to [Bruneton and Neyret
2008] or [Schafhitzel et al. 2007]. For our purposes we repre-
sent both the planet and the atmospheric shell as finely tessellated
spheres rendered with frontface culling (atmosphere) and backface
culling (planet) enabled.

To avoid costly real-time calculation of the extinction coefficient
t, we precompute it into a 2D lookup texture parameterized by the
observer altitude h and zenith angle ϑ . This texture contains t(PPc),
where P has altitude h and Pc is the intersection of the ray that starts
at P under zenith angle ϑ with the upper atmosphere boundary.

For rendering the atmosphere we just have to fetch the appropriate
colour value from the scattering texture. Fetching means evaluating

82

Figure 6: Using spectral precomputation (second column) produces more natural results than RGB precomputation (first column). The
differences are not only in lightness, but also in chroma (spectral data are less saturated) and even slightly in hue component, and are more
substantial during sunset, when higher scattering orders are stronger. The scale represents a maximum difference of 10%.

the remapping function for the atmosphere parameterization f from
the spatial position of the observer and retrieving two values from
the scattering texture (to perform a manual linear interpolation for
the fourth dimension). The fragment colour IF is then obtained
simply as IF = IS. If the observer is situated outside the atmosphere,
we compute the intersection point Pa between the view ray and the
sphere with the atmosphere radius and evaluate f for this point, as
there is no scattering or attenuation outside the atmosphere.

For shading the planetary surface we must also evaluate contribu-
tions other than the scattered light. For the ground, which is gen-
erally diffuse, we must account also for the direct illumination I′I
as well as indirect ambient illumination IA caused by the scattering.
For water surfaces, which are specular, it is necessary to account
for the reflected skylight and sunlight IR and of course for the light
from within the water volume Iwater

S . In either case the light has to
be finally attenuated on its path from Pg to the observer PO. See
Fig. 7 for the situation depiction.

Therefore, to obtain the light coming from the planetary surface IP,
we have to define two distinct formulae:

IP(PO,V,L,λ) = ID(λ)(−L ·N)I′I(Pg,L,λ)+
+ ID(λ)IA(Pg,L,λ) if Pg on ground

IP(PO,V,L,λ) = F̂(ϕ)(IS(Pg,VR,L,λ)+ I′I(Pg,VR,λ))+

+ Iwater
S (Pg,V ′R,D,λ) if Pg on water

Here, ID stands for the diffuse colour of the ground, fetched from
a surface texture, for example. F̂(ϕ) is the Fresnel term approxi-
mation denoting the amount of light reflected off the water surface.
We don’t use the full Fresnel term; instead we use the fast and accu-
rate approximation from [Lazányi and Szirmay-Kalos 2005] (which
can furthermore be precomputed). V ′R is the refraction ray, which
we compute in the fragment shader using the refract() intrin-
sic function of the Cg language. Iwater

S is obtained by fetching the
water scattering texture using the depth D of the point where V ′R in-
tersects the seabottom. I′I(Pg,VR,λ) = I′I(Pg,L,λ) if VR hits the star
disc, otherwise it is zero.

To obtain IF , we just sum the (attenuated) surface colour and the
scattering contribution:

IF = IS + IP · e−t(PaPg,λ)

Note that IF has a very high dynamic range. To correct this we

apply a very simple tone mapping operator from [O’Neil 2005]:
IF = 1− exp(−E · IF), where E is the exposure constant.

6 Implementation and Results

Our implementation uses a CPU-based program for the precompu-
tation algorithm and a GPU-based renderer. The precomputation
could be also carried out by a GPU (as shown in [Bruneton and
Neyret 2008]), but we have chosen CPU-implementation because
of its flexibility suitable for the spectral precomputation.

The used resolutions of the lookup textures are 32×128×32×8 for
the atmospheric scattering 4D table (packed in a 32×128×256 3D
texture), 32×64×64 for the water scattering 3D texture, 256×512
for the 2D extinction texture and 256 for the 1D ambient texture.
Their size together is 10MB (using 16b floating-point values per
channel). We sample the visible spectrum at 15 evenly distributed
samples. For numerical sampling of all integrals a regular trape-
zoidal evaluation rule with 30 samples for each integral was used.
Using higher sampling rates does not improve the apparent quality
of the calculated data.

The hardware configuration used for testing was a desktop PC with
Intel Core 2 Duo 1.86 Ghz CPU and NVidia GeForce 8800GT
graphics adapter. The precomputation time for the entire dataset
was about 1.5 hours for 6 scattering orders when using the afore-
mentioned sampling rates. Using more than 6–7 scattering orders
is not needed, since at this point the solution is well converged.
However, for very dense atmospheres, using up to 10 scattering
orders might be necessary. The performance of our rendering ap-
plication is always in real-time framerates. For the screen resolu-
tion of 1024× 768 the average measured framerate was 180 FPS
and the minimal framerate was 85 FPS. For the screen resolution of
2560×2048 the average measured framerate was 60 FPS and never
dropped below 29 FPS. The scene in both measurements contained
approximately 1.1 million static triangles.

Our method is a bit slower than the one of [Bruneton and Neyret
2008], since we also evaluate the reflection and scattering from wa-
ter bodies. The reason why they report lower framerates is that they
also account for the terrain morphology, while we do not.

83

Figure 8: Comparison of various water types appearance at morn-
ing and afternoon. Top: Water with high algae concentration.
Middle: Muddy water. Bottom: Water with high phytoplankton
abundance (phytoplankton scattering and absorption data obtained
from [Cerezo and Serón 2002]).

7 Conclusion

We have presented a method for physically-based real-time ren-
dering of planetary atmospheres and water surfaces. Our method
builds on the works of [Bruneton and Neyret 2008] and [Elek 2009],
but is more capable, allowing simulation of arbitrarily dense plan-
etary atmospheres and adding support for large-scale water bodies
within the same physical model and precomputation framework.
By doing fully spectral computations we also increase the realism
of the obtained data. We have shown how to utilize these data in a
real-time renderer, accounting for all involved light contributions.

Our work primarily targets real-time applications, such as flight
simulators and games, various virtual environments, but also
widespread software like Google Earth, where our model could be
used after some simplifications. Especially applications which need
to render both the atmosphere and large water volumes will benefit
from this work. We also think that some non-interactive renderers
could utilize the data from the precomputation step, as full simula-
tion of large-scale multiple scattering is not feasible even in these.

In the future we would like to generalize the model even more to
account for local changes of atmospheric parameters, so we can
drop the second half of Assumption 3. Another direction worth
exploring would be to include other types of participating media,
often suspended in the atmosphere and natural waters.

Acknowledgements We would like to thank Alexander Wilkie
and Jaromı́r Plášek for their useful comments and advice during the
creation of this work.

References

BORN, M. F., AND WOLF, E. 1999. Principles of Optics, 7th ed.
Cambridge University Press.

BRUNETON, E., AND NEYRET, F. 2008. Precomputed atmo-
spheric scattering. In Proceedings of EGSR ’08.

BRUNETON, E., NEYRET, F., AND HOLZSCHUCH, N. 2010. Real-
time realistic ocean lighting using seamless transitions from ge-
ometry to BRDF. Comput. Graph. Forum 29, 2.

BUITEVELD, H., HAKVOORT, J. M. H., AND DONZE, M. 1994.
The optical properties of pure water. In SPIE Proceedings on
Ocean Optics XII.

CEREZO, E., AND SERÓN, F. J. 2002. Rendering natural wa-
ters: Merging computer graphics with physics and biology. In
Proceedings of CGI ’02.

CORNETTE, W. M., AND SHANKS, J. G. 1992. Physical reason-
able analytic expression for the single-scattering phase function.
Applied Optics 31, 16.

ELEK, O. 2009. Rendering parametrizable planetary atmospheres
with multiple scattering in real-time. In Proceedings of the Cen-
tral European Seminar on Computer Graphics.

HABER, J., MAGNOR, M., AND SEIDEL, H.-P. 2005. Physically-
based simulation of twilight phenomena. ACM Transactions on
Graphics 24, 4.

IWASAKI, K., DOBASHI, Y., AND NISHITA, T. 2003. A volume
rendering approach for sea surfaces taking into account second
order scattering using scattering maps. In Proceedings of Volume
Graphics ’03.

LAZÁNYI, I., AND SZIRMAY-KALOS, L. 2005. Fresnel term ap-
proximations for metals. In WSCG 2005 Short Communications
Proceedings.

NISHITA, T., SIRAI, T., TADAMURA, K., AND NAKAMAE, E.
1993. Display of the earth taking into account atmospheric scat-
tering. In Proceedings of SIGGRAPH 93.

NISHITA, T., DOBASHI, Y., KANEDA, K., AND YAMASHITA, H.
1996. Display method of the sky color taking into account mul-
tiple scattering. In Proceedings of Pacific Graphics.

O’NEIL, S. 2004. Real-time atmospehric scattering.
http://www.gamedev.net/reference/articles/article2093.asp.

O’NEIL, S. 2005. Accurate atmospheric scattering. GPU Gems 2.
Addison-Wesley Professional.

PREETHAM, A. J., SHIRLEY, P., AND SMITS, B. 1999. A practical
analytic model for daylight. In Proceedings of SIGGRAPH 99.

PREMOZE, S., AND ASHIKHMIN, M. 2000. Rendering natural
waters. In PG ’00: Proceedings of the 8th Pacific Conference on
Computer Graphics and Applications.

RILEY, K., EBERT, D. S., KRAUS, M., TESSENDORF, J., AND
HANSEN, C. Efficient rendering of atmospheric phenomena.

SCHAFHITZEL, T., FALK, M., AND ERTL, T. 2007. Real-time
rendering of planets with atmospheres. Journal of WSCG 15.

WENZEL, C. 2006. Real-time atmospheric effects in games. In
ACM SIGGRAPH 2006 Courses.

WYMAN, D. R., PATTERSON, M. S., AND WILSON, B. C. 1989.
Similarity relations for the interaction parameters in radiation
transport. Applied Optics 28.

ZOTTI, G., WILKIE, A., AND PURGATHOFER, W. 2007. A critical
review of the preetham skylight model. In WSCG 2007 Short
Communications Proceedings I.

84

