
Geometric Skinning with Approximate Dual Quaternion Blending

Ladislav Kavan∗ 1 Steven Collins1 Jiřı́ Žára2 Carol O’Sullivan1

1Trinity College Dublin, 2Czech Technical University in Prague

84.9 FPS 197.4 FPS 55.1 FPS 122 FPS

Log-matrix Blending Dual Quaternions Spherical Blend Skinning Dual Quaternions

Figure 1: A comparison of dual quaternion skinning with previous methods: log-matrix blending [Cordier and Magnenat-Thalmann 2005] and
spherical blend skinning [Kavan and Žára 2005]. The proposed approach not only eliminates artifacts, but is also much easier to implement
and more than twice as fast.

Abstract

Skinning of skeletally deformable models is extensively used for
real-time animation of characters, creatures and similar objects.
The standard solution, linear blend skinning, has some serious
drawbacks that require artist intervention. Therefore, a number of
alternatives have been proposed in recent years. All of them suc-
cessfully combat some of the artifacts, but none challenge the sim-
plicity and efficiency of linear blend skinning. As a result, linear
blend skinning is still the number one choice for the majority of de-
velopers. In this paper, we present a novel skinning algorithm based
on linear combination of dual quaternions. Even though our pro-
posed method is approximate, it does not exhibit any of the artifacts
inherent in previous methods and still permits an efficient GPU im-
plementation. Upgrading an existing animation system from linear
to dual quaternion skinning is very easy and has a relatively minor
impact on run-time performance.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling – Geometric Transformations—
[I.3.7]: Computer Graphics—Three-Dimensional Graphics and Re-
alism – Animation

Keywords: skinning, rigid transformations, blending, dual quater-
nions, linear combinations

1 Introduction

Skinning and skeletal animation is the technology behind charac-
ter animation in many applications. In some situations, physically
accurate skin deformation, which supports muscle bulging and dy-
namic effects, is desirable. In other situations, however, a fast algo-

∗e-mail: kavanl@cs.tcd.ie

rithm capable of skinning multiple models interactively is needed,
for example in videogames and crowd simulations.

The standard algorithm for low-cost skinning is known by many
names: linear blend skinning, vertex blending, skeletal subspace
deformation or enveloping. It is sometimes used not only for
skin deformation (as the name suggests) but also to animate other
deforming elements, for example cloth, because it is consider-
ably faster than physically based cloth simulation [Cordier and
Magnenat-Thalmann 2005]. The basic principle is that skinning
transformations are represented by matrices and blended linearly.
It is very well known that the direct linear combination of matri-
ces is a troublesome way of blending transformations. This pro-
duces artifacts in the deformed skin, even if we restrict the skinning
transformations to rigid ones (i.e., composition of a rotation and
translation). In spite of these shortcomings, linear blending is still
a very popular skinning method, but perhaps only because there is
no simple alternative.

Recent previous work suggests converting rigid transformation ma-
trices to (quaternion,translation) pairs and blending them instead
of their matrix equivalents [Hejl 2004; Kavan and Žára 2005].
This works, but at a cost: Hejl’s algorithm [2004] imposes con-
straints on the model’s rigging (specifically, a vertex can only be
influenced by neighbouring bones, otherwise artifacts can occur).
This could be inconvenient, because linear blending has no such
constraints (and it is exploited for many 3D models). Kavan and
Žára’s method [2005] does not have this restriction, but uses a com-
plex and computationally expensive Singular Value Decomposition
scheme. Obviously, the simplicity of linear blend skinning is lost
in both cases.

The representation of rigid transformations by matrices or
(quaternion,translation) pairs illustrates just two possible pa-
rameterizations of SE(3), i.e., the group of rigid transforma-
tions. Nothing prevents us from blending, for example, 3-tuples
(axis,angle,translation) or pairs (axis,translation · sin(angle)).
Even if we restrict ourselves to blending via linear combinations
(motivated by efficiency and simplicity of implementation), we can
construct infinitely many different blending methods just by con-
sidering different parameterizations of rigid transformations.

1

ladislav
Note
Copyright ACM, (2008). This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version will be published in ACM Transactions on Graphics, http://doi.acm.org

A theoretically optimal rigid transformation blending method has
been proposed previously [Govindu 2004]. The algorithm pos-
sesses all desired mathematical properties that guarantee correct
skinning, but unfortunately it is iterative and thus prohibitively slow
for most real-time applications. Therefore, we propose instead a
closed-form approximation, based on dual quaternions – a general-
ization of regular quaternions first proposed in the nineteenth cen-
tury [Clifford 1882].

These concepts can be elegantly illustrated in 2D Euclidean space.
Assume we have 3 points p1,p2 and p3 lying on a spherical arc
(representing rotation about the origin), such as in Figure 2. Direct
averaging of point coordinates (left) produces pavg that no longer
lies on the arc. This is the reason for artifacts in linear blend skin-
ning – in extreme cases the average can even coincide with the arc’s
center. In 2D Euclidean space, this can be easily amended by aver-
aging angles corresponding to the points p1,p2 and p3 (see Figure 2
right).

p1
p2

p3

pavg

p1

p2

p3

pavg'

Figure 2: Averaging points (left) versus averaging angles (right).

The principle of our approach is the same as when blending nor-
mals, e.g., as in Phong shading (see Figure 3). When blending
normals n1 and n2 with weights 0.3 and 0.7, we first blend them
linearly, producing vector nb, and subsequently normalize it to the
resulting normal n f inal . Even though this is not equivalent to the
theoretically perfect intrinsic blending, the approximation is often
sufficient (particularly when n1 and n2 are close) and the algorithm
is very fast. Dual quaternions permit us to apply the same trick on
SE(3).

n1

n2

nb

nfinal

Figure 3: Standard normal blending trick: vectors n1 and n2 are first
blended linearly giving nb and then re-normalized, giving n f inal .

Moreover, the mathematical properties of dual quaternions ensure
that none of the skin collapsing effects (see Section 2.2) exhibited
by previous techniques will manifest themselves. Blending of dual
quaternions can be elegantly computed in a vertex shader with com-
plexity comparable to standard linear blending. Dual quaternions
are more memory efficient, requiring only 8 floats per transfor-
mation (essentially, two regular quaternions), instead of the 12 re-
quired by matrices. In an existing application, it is extremely easy
to replace a linear blend skinning implementation by a dual quater-
nion one. All that is necessary is a slight modification of the vertex
shader and conversion of the matrices to dual quaternions before
passing them to the shader. The model files as well as the internal

data structures do not need any change at all – the only difference
is in the transformation blending.

This paper extends the work presented in [Kavan et al. 2007]. We
have added a more complete dual quaternion tutorial (Appendix A),
providing proofs of all important statements and highlighting the
connection to spatial kinematics. Addressing practical issues, we
propose a more efficient vertex shader (Section 4), discuss quater-
nion antipodality issues (crucial for robust implementation, Sec-
tion 4.1) and propose a method to integrate scale/shear joint trans-
formations (Section 4.2).

Conventions. We denote scalars by lower-case letters, vectors,
complex numbers and quaternions in bold and matrices by capital
letters. Dual quantities are distinguished from non-dual by a caret;
for example â denotes a dual number and q̂ a dual quaternion. The
i-th component of vector v is written as vi, thus also v = (v1, . . . ,vn).
The dot product of vectors v and w is denoted as 〈v,w〉 and ‖v‖ is
the usual vector norm. The cross product is denoted as v×w and
takes precedence over vector addition, as is usual.

2 Related Work

The first reference to dual quaternions (historically called bi-
quaternions) appears in [Clifford 1882]. More recent publications
study dual quaternions from the viewpoint of theoretical kinematics
[Bottema and Roth 1979; McCarthy 1990]. To date, dual quater-
nions have been applied mainly in computer vision and robotics
[Daniilidis 1999; Perez and McCarthy 2004], but only rarely in
computer graphics [Luciano and Banerjee 2000].

Geometric algebras. Dual quaternions are a special case of
the more general concept of geometric algebras. These algebras
naturally contain not only vectors and quaternions, but also k-
dimensional subspaces [Wareham et al. 2005]. This leads to very
elegant and dimension-independent expressions of geometric prop-
erties, but sometimes unfortunately also to an increase in time and
memory complexity of the resulting implementation [Fontijne and
Dorst 2003]. Dual quaternions, in turn, are not so general, but
are more compact and faster to manipulate. For computer graph-
ics practitioners, the big advantage of dual quaternions is that they
are based on regular quaternions – a well-known tool in computer
graphics [Shoemake 1985].

Blending vs interpolation. A vast amount of literature has been
devoted to the problem of transformation interpolation [Barr et al.
1992; Juttler 1994; Marthinsen 1999; Belta and Kumar 2002; Hofer
and Pottmann 2004; Li and Hao 2006; Wang et al. 2008]. This is
not surprising, because the construction of interpolation curves for
given key transformations (e.g., camera orientations) is a funda-
mental problem in computer animation. Unfortunately, in skinning,
we face a different problem: the blending of rigid transformations,
i.e. their weighted average (confusingly, in some literature this is
also called interpolation). The weighted averages can be used to
construct interpolation curves (see [Buss and Fillmore 2001]) but
not vice versa.

2.1 Skinning

Historically, the idea of skin deformation by an underlying skeleton
is credited to [Magnenat-Thalmann et al. 1988]. Since then, sev-
eral different approaches to skeletal animation have emerged. Our
approach – dual quaternion skinning – falls into the category of ge-
ometric methods. For completeness, however, we also survey other
related techniques.

Physically based methods. A logical approach to character anima-
tion is to simulate the internal structure of the body: bones, muscles

2

and fat tissues. This can work either with explicit anatomy knowl-
edge [Scheepers et al. 1997; Aubel and Thalmann 2000; Teran
et al. 2005], or without [Capell et al. 2002; Guo and Wong 2005;
Pratscher et al. 2005]. Physically based methods generally obtain
a high level of realism (delivering also dynamic effects and muscle
bulges), but at high computational costs.

Capturing real subjects. Several methods successfully exploit
modern motion capture and/or 3D scanning devices to capture skin
deformation of real people [Allen et al. 2002; Anguelov et al. 2005;
Park and Hodgins 2006; Allen et al. 2006]. These approaches are
highly accurate, but require expensive hardware and are of course
limited to existing subjects only.

Example based techniques. Multiple input meshes can be used
both to resolve the artifacts of linear blending and to add addi-
tional effects like muscle bulging. Example based methods use
either direct interpolation between example meshes [Lewis et al.
2000; Sloan et al. 2001], approximation by principal components
of example deformations [Kry et al. 2002] or fit the linear blending
parameters to match the provided examples [Mohr and Gleicher
2003]. A more accurate (yet more complex) example interpola-
tion method has been proposed [Kurihara and Miyata 2004] and
augmented with an innovative GPU approach [Rhee et al. 2006].
Recently, example based skinning methods have been improved by
using rotational instead of linear regression [Wang et al. 2007; We-
ber et al. 2007]. Generally, this class of algorithms offers a level of
realism limited only by the number of input examples. However,
the production of examples can be costly, requiring a lot of artist
labour.

Another possible way to overcome the limitations of linear blending
with the aid of examples is to use more than one weight per matrix,
resulting in a method called Multi-Weight Enveloping [Wang and
Phillips 2002]. This idea has recently been refined by Merry et al.,
whose system is called Animation Space [2006]. The great advan-
tage of Animation Space is that it is a linear framework, i.e., that
blending is done in a linear space (albeit multi-dimensional) and yet
it still significantly outperforms both linear blend skinning as well
as multi-weight enveloping in terms of deformation quality [Jacka
et al. 2007].

Geometric methods. In this case, only one input mesh is provided
(designed in a reference pose). The skeleton-to-skin binding is de-
fined in a direct, geometrical way. The most popular method, estab-
lished with linear blend skinning, is to bind each vertex to one or
more joints. In the latter case, the weight (amount of influence) of
all influencing matrices must be specified. This weighting, as well
as skeleton fitting, is typically done manually. However, an auto-
matic procedure has been described recently [Baran and Popović
2007], thus simplifying the rigging process considerably.

Advanced blending methods, e.g., direct quaternion blending
[Hejl 2004], log-matrix blending [Cordier and Magnenat-Thalmann
2005] and spherical blending [Kavan and Žára 2005] use the same
rigging structure as linear blend skinning. Even though these tech-
niques remove some of the artifacts, they still fall short of deliver-
ing natural skin deformation in all postures (see Figure 1 and Sec-
tion 2.2).

Alternative rigging. Some researchers propose combatting skin-
ning artifacts by implementing a different rigging method, for ex-
ample based on swept surfaces [Hyun et al. 2005] or auxiliary
curved skeletons [Yang et al. 2006; Forstmann and Ohya 2006;
Forstmann et al. 2007]. In some cases, this also allows advanced
effects to be animated, such as muscle bulging and skin creasing.
The disadvantages include complexity of the GPU implementation
(even though the latest method from Forstmann et al. [2007] is al-
most as fast as linear blend skinning) and inconsistency with the

established rigging pipeline: new rigging tools and data formats are
needed. In this paper, we argue that the problems of linear blending
do not stem from incorrect or insufficient rigging, but from incor-
rect blending. With dual quaternion skinning, it is therefore not
necessary to either change the rigging structures or to update exist-
ing 3D models.

Another important class of methods is based on generalization of
barycentric coordinates [Ju et al. 2005; Joshi et al. 2007]. This
enables the user to deform a character using a simpler mesh (defor-
mation cage). This approach is very appealing mainly in off-line
production, where high quality and direct control of the deforma-
tions are more important than run-time efficiency.

2.2 Geometric Skinning

In this section, we elaborate on geometric skinning methods with
the rigging structure adopted from linear blend skinning (which is
the de facto standard in the videogames industry). A 3D object
conforming to this standard consists of skin, a skeleton and ver-
tex weights. The skin is a 3D triangular mesh with no assumed
topology or connectivity and the skeleton is a rooted tree (both are
designed in a reference pose). The nodes of the skeleton repre-
sent joints and the edges can be interpreted as bones. However,
each bone can be easily identified by its origin, so the difference
between joints and bones is rather moot in our case (and in the lit-
erature, these terms are often used interchangeably; we will use the
term joint). The transformations relating joints in the hierarchy are
assumed to be rigid (until Section 4.2, where we propose a method
to integrate scale/shear joint transformations). The vertex weights
describe the skin-to-skeleton binding, i.e., the amount of influence
of individual joints on each vertex.

Let us assume that there are p joints in our model. In the rest-
pose, each joint has an associated local coordinate system. The
transformation from the rest-pose of joint j ∈ {1, . . . , p} to its ac-
tual position in the animated posture can be expressed by a rigid
transformation matrix – let us denote this matrix as Cj ∈ SE(3).

We assume that vertex v is attached to joints j1, . . . , jn with weights
w = (w1, . . . ,wn). The indices j1, . . . , jn are integers referring to
the joints that influence a given vertex – in other words, they are in-
dices into the array of joints. There is usually a fixed upper bound
on n (the number of influencing joints), typically 4, due to graphics
hardware considerations. The weights are normally assumed to be
convex, i.e., ∑n

i=1 wi = 1 and wi ≥ 0. However, this non-negativity
is not exploited in our algorithms (analogously to linear blend skin-
ning), so artists can feel free to experiment with negative vertex
weights. The weight wi represents the influence of joint ji on ver-
tex v.

The vertex position in the mesh deformed by linear blend skinning
is then computed as

v′ =
n

∑
i=1

wiCji v (1)

that is, transforming vertex v by all influencing joint transforma-
tions Cji and taking a weighted average. This is reminiscent of
Figure 2 left, which suggests why artifacts such as the “candy-
wrapper” occur with linear blend skinning. To explain this arti-
fact, consider a very simple arm rig with only two joints: j1 cor-
responding to the shoulder and j2 to the elbow joint (see Figure 4
left). Vertex v in the figure is equally influenced by both joints, i.e,
w1 = w2 = 0.5, in order to achieve smooth skinning. Let us fur-
ther assume that the arm is animated by twisting joint j2 by 180
degrees around the x-axis. The joint transformations therefore can

3

be written as

Cj1 =
(

I 0
0 1

)
, Cj2 =

(
Rx(180◦) 0

0 1

)
where I denotes the 3× 3 identity matrix and Rx denotes rotation
about the x-axis. We see that averaging Cj1 v and Cj2 v produces
vertex v′ exactly at the position of joint j2, i.e., the skin collapses
to a single point. Examples of this effect with a realistic 3D model
are shown in Figure 14 left.

v

j1 j2

Cj1
v

Cj2
v

v'

Figure 4: A typical “candy-wrapper” artifact of linear blend skin-
ning. On the left is a reference pose and on the right an animated
one.

To gain a better insight into linear blend skinning, we can re-write
Equation (1) using distributivity of matrix-vector multiplication

n

∑
i=1

wiCji v =

(
n

∑
i=1

wiCji

)
v (2)

The right-hand side of Equation (2) shows that skinning can also be
computed by blending the transformations Cji first and then apply-
ing the result to v, thereby obtaining the result in one step.

The transformation blending used in the right-hand side of Equa-
tion (2) is a direct linear combination of matrices. It is well
known that this method is troublesome, because the blended ma-
trix ∑n

i=1 wiCji is not necessarily a rigid transformation, even if all
Cji are rigid (i.e., the set of orthonormal matrices is not closed under
addition). This is another way of explaining the linear blend skin-
ning problems – undesired scaling creeps into our transformation
matrix. In the extreme case shown in Figure 4, the blended matrix
can even become rank deficient.

An obvious idea to improve skinning quality is to replace the linear
blending of matrices in Equation (2) with a more sophisticated ma-
trix blending technique. In particular, if the new blending technique
will always produce a rigid transformation, we can expect that no
candy-wrapper-like artifacts will occur. An ideal way would be to
apply one of the SE(3) intrinsic methods [Govindu 2004; Kavan
et al. 2006]. This removes the artifacts of linear blend skinning but
at a significant cost. The intrinsic methods are iterative and each it-
eration requires non-trivial computations (for details please refer to
Appendix B.1). As a result, this approach has not become popular
in real-time skinning.

Ideally, we would like to achieve high-quality skin deformation but
with computational complexity comparable to that of linear blend
skinning. The applied matrix blending method does not have to be
exact, but should correctly handle both the rotational and transla-
tional parts of the transformations Cj1 , . . . ,Cjn . Handling the trans-
lational component is non-trivial, because it depends on the chosen
coordinate system (i.e., center of rotation). Let us illustrate what
happens if we simply interpolate the translation vectors linearly.
For our demonstration, we use the example of a human arm bending
at the elbow. We set the shoulder transformation Cj1 to the identity,
while Cj2 corresponds to the elbow bend. With respect to the coor-
dinate system of the elbow joint, the transformation matrices have
a simple form

Cj1 =
(

I 0
0 1

)
, Cj2 =

(
Rz(α) 0

0 1

)

We assume that the rotational blending is a 2D interpolation of the
angle (see Figure 2 right) and that interpolation of the translation
vectors is linear. For illustrative purposes only, Figure 5 left shows
the resulting transformation Cblend applied to the whole mesh in-
stead of individual vertices. As the translational part of both Cj1
and Cj2 is zero, the blended matrix is simply

Cblend(t) =
(

Rz(αt) 0
0 1

)

Let us examine what happens if we choose a different coordinate
system in which to express our transformations, for example that
associated with the shoulder joint (see Figure 5 right). If u is the
translation between the shoulder and the elbow joint and Tu is the
corresponding translation matrix, we can express the transforma-
tions with respect to the shoulder joint as

C′
j1 = TuCj1 T−1

u =
(

I 0
0 1

)

C′
j2 = TuCj2 T−1

u =
(

Rz(α) u−Rz(α)u
0 1

)

Note that while the matrix C′
j2

differs from Cj2 , they both represent
the same transformation (as is obvious from the bottom row of Fig-
ure 5). If we now interpolate between C′

j1
and C′

j2
using the same

method as before, we obtain

C′
blend(t) =

(
Rz(αt) t(u−Rz(α)u)

0 1

)

This is unfortunate because C′
blend(t) no longer represents the same

transformation as Cblend(t) for 0 < t < 1. To see this, compare
the transformations of the elbow joint position by Cblend(t) and
C′

blend(t). While the former leaves the elbow joint fixed, the lat-
ter produces the following trajectory

u′(t) = C′
blend(t)

(
u
1

)
= Rz(αt)u− tRz(α)u+ tu

For example, for α = 120◦ and u = (2,0,0) (as in Figure 5) we
obtain u′(0.5) = (2.5,

√
3/2,0). This represents an unwanted drift

away from the desired elbow position u, as illustrated in Figure 5
right. This has, of course, catastrophical consequences for skinning.
In practice, the situation is even worse, as the origin (i.e., the default
center of rotation) is usually even further away (typically near the
character’s center of mass). See Figure 6 for an example with a 3D
character model.

2.3 Center of Rotation Selection

The solution of the problem described in the previous section is
straightforward, i.e., it is sufficient to set the rotation center to be in
the appropriate joint. This is the basic idea of Hejl’s method [2004],
which assumes that the rotation center of vertex v is fixed and coin-
cides with the joint nearest to vertex v. For blending the rotational
component, Hejl proposes to apply a linear combination of regular
quaternions. This trick is of a similar nature to that of normal aver-
aging (see Figure 3), but is instead performed on the unit quaternion
hypersphere. Even though this is just an approximation of rigorous
spherical averages [Buss and Fillmore 2001], it is sufficiently ac-
curate for skinning and can be efficiently implemented on graphics
hardware.

In cases similar to that of the elbow (two bones connected by a
joint), this works perfectly. However, for more complex joint in-
fluences, e.g., when more than two influencing joints are involved,

4

t = 0

t = 0.25

t = 0.5

t = 0.75

t = 1

Figure 5: Interpolation of rigid transformations with rotation center
in the elbow (left) and in the shoulder joint (right). The shoulder is
not a suitable rotation center because it leads to an undesirable drift
of the interpolated transformation.

selection of the center of rotation is not so simple. With character
models, such difficult situations usually occur around the arm-pit or
dorsum. To illustrate the problem more clearly, we use the example
of a skeletally animated piece of cloth.

Let us assume that we have a fully outstretched piece of cloth influ-
enced by two joints, as in Figure 7 left. Vertices close to the bone
emanating from j1 will follow transformation Cj1 , vertices close to
the bone emanating from j2 will follow transformation Cj2 and ver-
tices in between will blend between these two transformations (to
simulate the stretching effect). A problem occurs when switching
the center of rotation from j1 to j2. For example, vertices v1 and
v2 in the figure are close to each other and therefore they will have
similar vertex weights, i.e., approximately 0.5 for both j1 and j2.
Therefore, both vertices will be rotated by approximately the same

Figure 6: Artifacts produced by blending rotations with respect to
the origin (left) are even worse than those of linear blend skinning
(right).

amount (i.e., half of the rotation present in Cj1). However, vertex v1
is slightly closer to j1 and vertex v2 is slightly closer to j2, which
means that v1 will rotate about j1, while v2 will rotate about j2.
This causes a problem depicted in Figure 7 right. Since the rota-
tion centers of v1 and v2 differ considerably, the deformed vertices
v′1,v

′
2 will be quite far apart. This is unfortunate, as nearby vertices

v1,v2 in the reference skin should be mapped to nearby vertices
v′1,v

′
2 in the deformed skin. Violation of this condition manifests

itself as cracks, see Figure 15 left.

j1

j2

v1

v2

v2'

v1'

Figure 7: Problems with rotating vertices around their nearest
joints. On the left is a reference pose and on the right an animated
one.

A method to cope with these problems has been proposed by Kavan
and Žára [2005]. This approach, called spherical blend skinning,
also works by blending translations and rotations (represented by
quaternions) independently. However, the center of rotation is se-
lected in a more sophisticated way. In particular, the center of rota-
tion is not fixed, but is computed at run-time using the actual joint
transformations. To summarize, spherical blend skinning defines
the center of rotation for vertex v influenced by joints j1, . . . , jn as
the point r which minimizes

∑
1≤a<b≤n

‖Cja r−Cjb r‖

This is expressed as a least squares problem which is solved using
Singular Value Decomposition (SVD).

Spherical blend skinning successfully handles situations such as
that depicted in Figure 7, as both v1 and v2 are influenced by the
same set of joints and therefore a suitable center of rotation will
be computed. Unfortunately, spherical blend skinning is expensive
in that the SVD algorithm is rather time consuming and thus it is
not tractable to execute it once per vertex (if real-time speed is re-
quired). Therefore, spherical blend skinning uses the same rotation

5

center for all vertices that are influenced by the same set of joints.
Unfortunately, this can again cause discontinuous change of rota-
tion centers, as demonstrated in Figure 8.

j1

j2

v1

v2

v1
'

j3

r2

r1

v2
'

Figure 8: Problem with rotation centers in spherical blend skinning.
On the left is a reference pose and on the right an animated one.

In this example, we modify the rigging from Figure 7 by adding
one more joint, j3. Let us assume v2 is influenced by all three
joints (with j3 having only a very small weight, e.g., w3 = 0.01),
while v1 is too far from j3 and thus is influenced only by j1 and
j2. Even though vertex v2 is only negligibly influenced by joint j3,
the algorithm computing rotation centers considers all influencing
joints as equal (because the rotation center will be reused at other
vertices). Therefore, the center of rotation r1 used to rotate vertex
v1 will be different from the center of rotation r2 used to rotate v2,
and we run into similar problems as before, though typically not so
pronounced (see also Figure 17 left).

Intuitively, it is necessary to compute a proper center of rotation
for every vertex individually, taking the joint weights into account.
With spherical blend skinning, this is unfortunately not possible in
real-time, as it would require execution of the SVD algorithm once
per vertex. However, an interesting alternative would be to blend
the rotation centers themselves. This idea has been investigated
by Alexa [2002], using matrix exponentials and logarithms. The
main principle is to linearly combine matrix logarithms instead of
the matrices themselves (therefore the method is also known as log-
matrix blending). The relationship between matrix logarithms and
rotation centers might not be immediately obvious. However, note
that the logarithm of a matrix M ∈ SE(3) can be written as (see
[Murray et al. 1994])

logM =

⎛
⎜⎝

0 −θa3 θa2 m1
θa3 0 −θa1 m2
−θa2 θa1 0 m3

0 0 0 0

⎞
⎟⎠ (3)

where θ is the angle of rotation, a = (a1,a2,a3), ‖a‖ = 1, is the di-
rection of the rotation axis, m = (m1,m2,m3) = θr×a+da, while
r is the center of rotation and d is the pitch (ratio of translational
and rotational velocity). Note that the center of rotation occurs in
the cross product r× a, which simply expresses the fact that any
point r+ ta is also a valid rotation center (where t ∈ R is arbitrary).
All rotation centers therefore form a line in space, known also as
the screw axis, see Appendix A.3.

Linear combination of matrix logarithms therefore involves linear
combination of rotation centers. Log-matrix blending thus avoids
the center of rotation problem inherent in quaternion-based meth-
ods, making it an appealing technique for skinning [Cordier and
Magnenat-Thalmann 2005]. Unfortunately, log-matrix blending
has another shortcoming, first pointed out in [Bloom et al. 2004].
The problem is that the matrix logarithm represents rotations in the

so called scaled axis representation, i.e., represented by vector θa,
where θ is the angle of rotation and a,‖a‖= 1, is the direction of the
axis of rotation. Interpolation of scaled rotation axes has certain un-
desirable properties, the most important being that it is not a short-
est path interpolation. The reason is that the projection of a straight
line onto a sphere (via exponential mapping) will not always result
in a geodesic. However, geodesics correspond to shortest path in-
terpolation – any deviation from the geodesic thus implies a longer
than necessary trajectory (see Bloom et al. [2004] for details). In
skinning, this manifests itself as an unnatural skin deformation (see
Figure 16 left).

Note that it would be possible to improve this situation by select-
ing a different coordinate system with respect to which the matri-
ces are expressed. This is possible for n = 2 and therefore also for
piecewise linear curves [Li and Hao 2006]. However, it is unclear
how to obtain an optimal coordinate system when blending n > 2
transformations. Nevertheless, this is an issue only with the scaled
axis representation of rotations. With quaternions, we always ob-
tain shortest path interpolation of rotations – even if the quaternions
are blended linearly [Kavan and Žára 2005]. This is the reason why
we do not encounter any non-shortest path artifacts with spherical
blend skinning or with Hejl’s method [2004].

3 Rigid Transformation Blending

From the discussion of previous geometric skinning methods, we
see what an ideal rigid transformation blending method for skinning
should look like. In particular, it should properly blend the centers
of rotation (as with log-matrix blending), but also take advantage
of quaternions to blend the rotational parts. A straightforward idea
would be to simply blend the rotation centers linearly and couple
them with rotations computed using quaternions. Unfortunately, as
demonstrated below, this does not work. In this section, we will
therefore discuss how the rotation centers should be blended prop-
erly.

Before we start, however, we need to prepare a formula expressing
the center of rotation from a given rotation and translation (which
will be useful not only in the following section, but also in Ap-
pendix A.3).

Lemma 1. If a 2D rigid transformation is given by translation t ∈
R2 and angle of rotation α , then its center of rotation r is given as

r =
1
2

(
t+z× t cotan

α
2

)
(4)

where z = (0,0,1) is the z-axis.

Proof. The formula can be derived elegantly using complex num-
bers – let us therefore assume that t is a complex number. The
center of rotation being sought, r ∈C, is the stationary point of our
rigid transformation, i.e.,

r = t+eiα r

From this equation we can express the center of rotation as follows:

r =
t

1−eiα · 1−e−iα

1−e−iα =
1−e−iα

2(1−cos α)
t =

1−cos α + isinα
2(1−cos α)

t

Using one of the well-known trigonometric identities

sinα
1−cos α

= cotan
α
2

and the fact that multiplication by a complex unit is equivalent to a
cross product with the z-axis, we obtain Equation (4).

6

Note that the same formula applies in 3D, just using an arbitrary
axis of rotation instead of the z-axis. This is because the translation
component parallel to the rotation axis does not affect the center of
rotation (see Appendix A.3).

3.1 2D Case

We will present a simple SE(2) example which will illustrate the
issues with blending centers of rotation. Let us assume we have
two 2D rigid transformations M1,M2 ∈ SE(2), where M1 is given
by angle α1 and translation vector (2cosα1,2sinα1), and M2 by
angle α2 and translation vector (2cosα2,2sin α2), see Figure 9.

(0,0) (2,0)

�1

�2

r2

r1

M2

M1

(-1,0)

�1

�2

Figure 9: Interpolation between transformations M1 and M2 ∈
SE(2) with rotation centers r1 and r2. Note that the angle of ro-
tation is the same with respect to any center.

First of all, we need to express the rotation centers r1 and r2. In
fact, we can easily find the rotation centers for all transformations
from the family⎛

⎝ cosα −sinα 2cosα
sinα cosα 2sinα

0 0 1

⎞
⎠ , α ∈

[
0,

π
2

]

If we plug t = (2cos α,2sinα) into Equation (4), we obtain, after
some simplifications,

r =
(
−1,

sinα
1−cos α

)
=
(
−1, cotan

α
2

)
(5)

The rotation center corresponding to Mi therefore is

ri = (ri,x, ri,y) =
(
−1, cotan

αi

2

)
, i = 1,2 (6)

Now, we can turn our attention to interpolation between M1 and
M2. Obviously, M2 can be obtained from M1 by composing M1
with origin-centered rotation with angle α2 −α1. Therefore, the
natural way to interpolate between M1 and M2 is along the spherical
arc, depicted in Figure 9. An important question is what happens
with the center of rotation of the interpolated transformation M(t).
Obviously, the rotation center of M(t) will lie on the line segment
determined by r1 and r2. However, from Equation (6), we see that
the interpolation of rotation centers will not be linear. Let us test
how far from the correct solution the linear combination of rota-
tion centers is. The resulting trajectory for α1 = 30 and α2 = 60
degrees is shown in Figure 10. We see that it is quite far from the
desired spherical arc, and therefore we can conclude that non-linear
interpolation of rotation centers is indeed necessary.

r2

r1

�1

�2

(0,0) (2,0)(-1,0)

resulting trajectory

Figure 10: Trajectory resulting from linear interpolation of rotation
centers.

Let us therefore derive the desired non-linear interpolant. First,
however, a remark regarding interpolation of the angle: in 2D,
it would be natural to simply interpolate the rotation angle lin-
early. Unfortunately, the corresponding 3D counterpart would in-
volve proper spherical averages [Buss and Fillmore 2001], which
is undesirable, because for fast skinning we would prefer linear
quaternion blending. Therefore, to make our discussion relevant,
we will consider the angle of rotation to be interpolated using the
2D version of linear quaternion blending. This amounts to interpo-
lation between (cosα1,sinα1) and (cosα2,sinα2) along a straight
line followed by projection back to the spherical arc, as shown in
Figure 3. Moreover, to be fully compatible with quaternions, we
will work with half of the rotation angle in trigonometric functions
(noting that quaternions employ half of the angle of rotation).

Specifically, if we denote pi = (cos αi
2 ,sin αi

2), the interpolated an-
gle α(t) will be given by(

cos
α(t)

2
,sin

α(t)
2

)
=

(1− t)p1 + tp2

‖(1− t)p1 + tp2‖ (7)

According to Equation (5), all we need, to compute the center of
rotation corresponding to α(t), is sinα(t) and cosα(t). This can be
retrieved from Equation (7) using the well known identities

cosα(t) =
(

cos
α(t)

2

)2

−
(

sin
α(t)

2

)2

sinα(t) = 2sin
α(t)

2
cos

α(t)
2

The actual derivations are somewhat lengthy, therefore we em-
ployed Maple [Char et al. 1983] to perform all of the substitutions
and simplifications. According to the listing (see Figure 11), the
resulting formula for the y-coordinate of the rotation center is given
by

ry(t) =
(1− t)cos

α1

2
+ t cos

α2

2

(1− t)sin
α1

2
+ t sin

α2

2

(8)

(for the x-coordinate we of course have rx(t) = −1). Equation (8)
can be re-written to

ry(t) =
(1− t)sin

α1

2
cotan

α1

2
+ t sin

α2

2
cotan

α2

2

(1− t)sin
α1

2
+ t sin

α2

2

7

> p1x := cos(alpha1/2): p1y := sin(alpha1/2):

> p2x := cos(alpha2/2): p2y := sin(alpha2/2):

> ptx := (1-t)*p1x + t*p2x: pty := (1-t)*p1y
+ t*p2y:

> norm := sqrt(ptx^2 + pty^2):

> cosAlphaThalf := ((1-t)*p1x + t*p2x) / norm:

> sinAlphaThalf := ((1-t)*p1y + t*p2y) / norm:

> cosAlphaT := simplify(cosAlphaThalf^2 -
sinAlphaThalf^2);

cosAlphaT := −(2cos(
1
2

α1)2 −4cos(
1
2

α1)2 t+

2cos(
1
2

α1)t cos(
1
2

α2)+2cos(
1
2

α1)2 t2−

2cos(
1
2

α1)t2 cos(
1
2

α2)+2t2 cos(
1
2

α2)2 −1+2t−

2sin(
1
2

α1)t sin(
1
2

α2)−2t2 +2sin(
1
2

α1)t2 sin(
1
2

α2))
/

(−2cos(
1
2

α1)t cos(
1
2

α2)+2cos(
1
2

α1)t2 cos(
1
2

α2)−1+

2t −2sin(
1
2

α1)t sin(
1
2

α2)−2t2 +2sin(
1
2

α1)t2 sin(
1
2

α2))

> sinAlphaT := simplify(2*sinAlphaThalf*
cosAlphaThalf);

sinAlphaT := −2((−sin(
1
2

α1)+ sin(
1
2

α1)t − t sin(
1
2

α2))

(−cos(
1
2

α1)+cos(
1
2

α1)t − t cos(
1
2

α2)))
/

(−2cos(
1
2

α1)t cos(
1
2

α2)+2cos(
1
2

α1)t2 cos(
1
2

α2)−1+

2t −2sin(
1
2

α1)t sin(
1
2

α2)−2t2 +2sin(
1
2

α1)t2 sin(
1
2

α2))

> ryT := simplify(sinAlphaT/(1-cosAlphaT));

ryT := −((−sin(
1
2

α1)+ sin(
1
2

α1)t − t sin(
1
2

α2))

(−cos(
1
2

α1)+cos(
1
2

α1)t − t cos(
1
2

α2)))
/

(−1+2t −2sin(
1
2

α1)t sin(
1
2

α2)−2t2+

2sin(
1
2

α1)t2 sin(
1
2

α2)+cos(
1
2

α1)2 −2cos(
1
2

α1)2 t+

cos(
1
2

α1)2 t2 + t2 cos(
1
2

α2)2)

> simplify(denom(ryT)+(-sin(1/2*alpha1)+
sin(1/2*alpha1)*t-t*sin(1/2*alpha2))^2);

0
> ryTfinal := (cos(1/2*alpha1)-cos(1/2*alpha1)*t+
t*cos(1/2*alpha2)) / (sin(1/2*alpha1)-
sin(1/2*alpha1)*t+t*sin(1/2*alpha2));

ryTfinal :=
cos(

1
2

α1)−cos(
1
2

α1)t + t cos(
1
2

α2)

sin(
1
2

α1)− sin(
1
2

α1)t + t sin(
1
2

α2)

> simplify(ryTfinal - ryT);

0

Figure 11: Center of rotation derivation in Maple

=
(1− t)sin

α1

2
r1,y + t sin

α2

2
r2,y

(1− t)sin
α1

2
+ t sin

α2

2

This allows us to conclude that when the angle of rotation is inter-
polated using linear quaternion blending, the corresponding center
of rotation r(t) is interpolated non-linearly according to the formula

r(t) =
(1− t)sin

α1

2
r1 + t sin

α2

2
r2

(1− t)sin
α1

2
+ t sin

α2

2

(9)

This is, in fact, linear interpolation weighted by the factor sin αi
2 .

This suggests that we could store the rotation center in the form of
ri sin αi

2 instead of just ri. Actually, if we add a unit quaternion to
represent the rotation, we obtain a representation of SE(2) that can
be interpolated linearly without introducing discrepancy between
the rotation and its center.

Have we discovered anything new? The answer is no. In fact,
this representation of SE(2) was first discovered in the 19th cen-
tury [Clifford 1882] and is known today as planar dual quaternions
[McCarthy 1990]. In particular, any planar dual quaternion q̂ has
the form

q̂ = cos
θ
2

+ sin
θ
2

(k + εiry − ε jrx) (10)

where θ is the angle of rotation and (rx,ry) is the center of rotation.
Note that i, j,k are the usual (Hamilton’s) quaternion units, while ε
is the dual unit, i.e., a number with property ε2 = 0 (the intuition
is that ε is so small that its square vanishes completely). In the
following, we will assume that the reader is familiar with basic dual
quaternion operations and their properties – otherwise please see
the enclosed tutorial (Appendix A).

3.2 3D Case

Using dual quaternions, the interpolation derived in Section 3.1 can
be written very concisely. We call this method Dual quaternion
Linear Blending (DLB) and define it as follows

DLB(t; q̂1, q̂2) =
(1− t)q̂1 + tq̂2

‖(1− t)q̂1 + tq̂2‖
where q̂1, q̂2 are unit dual quaternions representing the input trans-
formations. Note that if q̂1, q̂2 are planar dual quaternions, the cor-
responding rotation centers exactly obey Equation (9). However,
DLB is defined for general dual quaternions and therefore can be
applied to arbitrary 3D rigid transformations.

What is the geometrical interpretation of the 3D DLB? Recall that
a unit dual quaternion is a special representation of the screw pa-
rameters. In particular, as shown in Appendix A.3, any unit dual
quaternion q̂ can be written as

q̂ = cos
θ0

2
+ s0 sin

θ0

2
+ ε
(

sε sin
θ0

2
− θε

2
sin

θ0

2
+ s0

θε
2

cos
θ0

2

)
where θ0 is the angle of rotation, s0 is the direction of the axis of
rotation, θε is the amount of translation along the rotation axis and
sε = r× s0 is the moment of the rotation axis (where r is the center
of rotation). Again, as in Equation (3), we see that the center of
rotation occurs in the cross product with the direction of the axis of
rotation. Note that if s0 = (0,0,1), the expression above reduces to
Equation (10) (i.e., the 2D case is nothing more than the 3D case
restricted to rotations about the z-axis).

The interpretation of the terms occuring in q̂ is as follows. Obvi-
ously, the non-dual part, i.e., cos θ0

2 + s0 sin θ0
2 is simply the reg-

ular quaternion representing the rotational component. Regarding
the dual part, we see that the moment sε is again multiplied by
sin θ0

2 , as was the case in 2D (Section 3.1). The term θε
2 sin θ0

2 is

8

the “padding” which normalises q̂ (it is analogous to the cos θ0
2 ele-

ment of a regular quaternion). This is not surprising because a rigid
transformation has only 6 degrees of freedom, whereas there are 8
elements in a dual quaternion. The last term, i.e., s0

θε
2 represents

translation along the axis of rotation. We see that in this term, the
weighting factor happens to be cos θ0

2 (instead of sin θ0
2).

If required, DLB can be computed even without using dual quater-
nions. The principle is to convert the input matrices to the screw pa-
rameters (i.e., the screw axis, the angle of rotation and the amount
of translation), and then linearly blend these parameters multiplied
by the appropriate weighting functions (i.e., either sin θ0

2 or cos θ0
2).

However, the practical value of this approach is questionable, be-
cause it is obviously less efficient than blending dual quaternions.
In fact, an immediate optimization would be to precompute the
trigonometric functions and their products, which would lead to
nothing but disguised dual quaternion elements. For readers more
interested in the constructive approach to dual quaternions and the
related kinematic issues, we refer them to [McCarthy 1990; Bot-
tema and Roth 1979].

A big advantage of DLB is that it works for more than two rigid
transformations. If these transformations are expressed as unit dual
quaternions q̂1, . . . , q̂n with convex weights w = (w1, . . . ,wn), the
generalized DLB is simply

DLB(w; q̂1, . . . , q̂n) =
w1q̂1 + . . .+wnq̂n

‖w1q̂1 + . . .+wnq̂n‖ (11)

This is very useful for skinning, where we often need to blend more
than two joint transformations. However, note that DLB is only an
approximation of rigorously defined weighted averages. The per-
fectly correct blending algorithm can be obtained by generalizing
the methods presented in [Buss and Fillmore 2001], see Section 3.4
and Appendix B.1.

3.3 Distributivity and Coordinate Invariance

In Section 3.1, we have shown that the requirement of correct han-
dling of rotation centers in SE(2) leads to planar dual quaternions.
This opens a question as to whether this is just a coincidence, or
rather a consequence of some more fundamental property. In the
following, we argue that the latter is the case and that the crucial
property of dual quaternions is called distributivity. In the language
of geometry, it corresponds to coordinate invariance.

Let us start by recalling the definitions. Distributivity (of multipli-
cation with respect to addition) requires that for any dual quater-
nions q̂1, q̂2, q̂3

(q̂1 + q̂2)q̂3 = q̂1q̂3 + q̂2q̂3

q̂3(q̂1 + q̂2) = q̂3q̂1 + q̂3q̂2

Note that because of non-commutativity, we do indeed need both
of these equations, sometimes referred to as right and left distribu-
tivity.

Coordinate invariance appears in many contexts in computer graph-
ics. In this paper, we are concerned with coordinate invariance of
transformation blending. Let us denote a general interpolation be-
tween two arbitrary transformations N1,N2 ∈ SE(3) as Φ(t;N1,N2),
where t ∈ [0,1] is the interpolation parameter. Right-invariance re-
quires Φ to satisfy

∀T ∈ SE(3) : Φ(t;N1,N2)T = Φ(t;N1T,N2T)

while left-invariance requires

∀T ∈ SE(3) : T Φ(t;N1,N2) = Φ(t;T N1,T N2)

If Φ satisfies both right- and left-invariance, we say it is bi-
invariant. It is obvious that bi-invariance implies coordinate in-
variance, requiring

∀T ∈ SE(3) : T Φ(t;N1,N2)T−1 = Φ(t;T N1T−1,T N2T−1)

If the interpolation Φ is defined via linear combination, there is an
immediate connection between distributivity and coordinate invari-
ance. This is the case of DLB, defined in Section 3.2. It is easy to
see that bi-invariance of DLB follows directly from distributivity of
dual quaternions, as shown in the following lemma.

Lemma 2. For any unit dual quaternions p̂, q̂1, q̂2 and any inter-
polation parameter t ∈ [0,1], both of the following equations are
true

DLB(t; q̂1p̂, q̂2p̂) = DLB(t; q̂1, q̂2)p̂
DLB(t; p̂q̂1, p̂q̂2) = p̂DLB(t; q̂1, q̂2)

Proof. For proof of the right-invariance it is sufficient to use the
right-distributivity of dual quaternions which implies ‖(1−t)q̂1p̂+
tq̂2p̂‖ = ‖((1 − t)q̂1 + tq̂2)p̂‖ = ‖(1 − t)q̂1 + tq̂2‖‖p̂‖ = ‖(1 −
t)q̂1 + tq̂2‖ (as p̂ is a unit dual quaternion). We can thus write

DLB(t; q̂1p̂, q̂2p̂) =
(1− t)q̂1p̂+ tq̂2p̂
‖(1− t)q̂1p̂+ tq̂2p̂‖ =

=
(1− t)q̂1 + tq̂2

‖(1− t)q̂1 + tq̂2‖ p̂ = DLB(t; q̂1, q̂2)p̂

Proof of the left-invariance is a direct analogy of the proof above
(using left-distributivity of dual quaternions).

It may seem that bi-invariance and distributivity are just theoretical
properties without any practical implications. However, this is not
the case, as we now illustrate on the example from Figure 9. Let us
assume that unit planar dual quaternions q̂1, q̂2 correspond to our
transformations M1,M2 ∈ SE(2). As discussed in Section 3.1, the
natural interpolation between M1 and M2 is to consider the relative
motion between M1 and M2, interpolate it, then compose the re-
sult with M1. In our example, that relative transformation was the
origin-centered rotation with angle α2−α1. In the language of dual
quaternions, this can be written as

DLB(t;1, q̂2q̂∗
1)q̂1

because 1 corresponds to the identity and q̂2q̂∗
1 to the relative trans-

formation (i.e., in our case, pure rotation). However, thanks to bi-
invariance, we have

DLB(t;1, q̂2q̂∗
1)q̂1 = DLB(t; q̂1, q̂2) (12)

We have re-derived the result from Section 3.1, i.e., that linear
blending of dual quaternions represents a plausible way to interpo-
late between M1 and M2. Another interpretation of Equation (12) is
that we do not have to evaluate the relative motion (i.e., q̂2q̂∗

1) ex-
plicitly, because linear blending of dual quaternions automatically
blends only that relative component.

Bi-invariance can also explain the problems with linear blending
of (quaternion,translation) pairs encountered in [Hejl 2004; Ka-
van and Žára 2005]. To see this, let us formally define an al-
gebra over (quaternion,translation) pairs with multiplication ⊗

9

corresponding to composition of transformations, i.e., for two
(quaternion,translation) pairs (q0, t0), (q1, t1), this is defined as

(q0, t0)⊗ (q1, t1) = (q0q1, t0 +q0t1q∗
0)

interpreting the 3D vector t1 as a quaternion with zero scalar part
(as is usual). The right distributivity would require that

(q0 +q1, t0 + t1)⊗ (q2, t2) = (q0, t0)⊗ (q2, t2)+(q1, t1)⊗ (q2, t2)

Expanding the right hand side yields

(q0, t0)⊗ (q2, t2)+(q1, t1)⊗ (q2, t2) =
= (q0q2 +q1q2, t0 + t1 +q0t2q∗

0 +q1t2q∗
1)

while the left hand side expands to

(q0 +q1, t0 + t1)⊗ (q2, t2) =
= (q0q2 +q1q2, t0 + t1 +(q0 +q1)t2(q0 +q1)∗)

It can be shown that the term (q0 +q1)t2(q0 +q1)∗ is not equivalent
to q0t2q∗

0 +q1t2q∗
1, which precludes right distributivity. This sim-

ply reflects the fact that blending (quaternion,translation) pairs ro-
tates about the origin. Note that this might be advantageous in some
settings (e.g., in rigid body physics, where we can define the origin
to coincide with the center of mass). However, as demonstrated in
Section 2.2, this is a complication in skinning.

As a final remark, we note that both linear blending of matrices
and linear blending of matrix logarithms are coordinate invariant.
The former follows from the distributivity of matrix multiplication,
while the latter follows from the properties of the matrix exponen-
tial and logarithm (see [Moakher 2002])

∀N,T ∈ SE(3) : exp(T NT−1) = T exp(N)T−1

∀N,T ∈ SE(3) : log(T NT−1) = T log(N)T−1

This explains why we did not encounter any rotation-center issues
with linear blend skinning or with log-matrix blending.

3.4 Accuracy of Dual Quaternion Linear Blending

As argued in Section 3.3, DLB is a plausible method to interpolate
rigid transformations. However, it is not perfect, as it is not a group-
intrinsic method (i.e., it involves the “normal-interpolation” trick
shown in Figure 3). In this section we discuss whether this will
introduce artifacts when employing DLB in skinning. For clarity,
we will start with the case of two transformations. The first step
is to establish the perfectly correct blending method, i.e., one that
respects the geometry of the underlying group (in our case SE(3)).

In the case of SO(3), the theoretically perfect solution is Spheri-
cal Linear Interpolation (SLERP) [Shoemake 1985]. Recall that for
two unit quaternions q1,q2 with parameter t ∈ [0,1], the formula is
SLERP(t;q1,q2) = (q2q∗

1)
tq1 (assuming that 〈q1,q2〉 ≥ 0; this can

always be enforced by negating one of the quaternions). With the
aid of dual quaternions, SLERP can be easily generalized to SE(3).
We call the resulting method Screw Linear Interpolation (ScLERP),
for reasons that will soon become clear. For any two unit dual
quaternions q̂1, q̂2, it is given as ScLERP(t; q̂1, q̂2) = (q̂2q̂∗

1)
t q̂1.

What is its geometric interpretation?

We can see that q̂2q̂∗
1 is a unit dual quaternion, which represents the

relative motion between q̂1 and q̂2. The power can be written as
(q̂2q̂∗

1)
t = cos(t α̂

2)+ n̂sin(t α̂
2) for some dual angle α̂ and dual vec-

tor n̂ (see Appendix A.4). The dual vector n̂ represents the axis of
the screw motion and the dual angle t α̂

2 = t α0
2 +εt αε

2 contains both
the angle of rotation (tα0) and the amount of translation (tαε). We

can immediately observe two important properties: the axis n̂ of the
screw motion is constant (independent of t), and the angle of rota-
tion tα0, as well as the amount of translation tαε , vary linearly with
respect to the interpolation parameter t. This means that ScLERP is
a constant speed and shortest path interpolation, as could have been
expected because it is a generalization of SLERP. As discussed in
Section 3.3, another crucial property we expect from ScLERP is
coordinate invariance, which we prove in the following lemma.

Lemma 3. ScLERP is bi-invariant, that is for any unit dual quater-
nions p̂, q̂1, q̂2 and any interpolation parameter t ∈ [0,1], both of
the following equations are true

ScLERP(t; q̂1p̂, q̂2p̂) = ScLERP(t; q̂1, q̂2)p̂
ScLERP(t; p̂q̂1, p̂q̂2) = p̂ScLERP(t; q̂1, q̂2)

Proof. The right-invariance is easy to show, because

ScLERP(t; q̂1p̂, q̂2p̂) = (q̂2p̂p̂∗q̂∗
1)

t q̂1p̂ = (q̂2q̂∗
1)

t q̂1p̂ =
= ScLERP(t; q̂1, q̂2)p̂

Proving the left-invariance is a little more tricky:
ScLERP(t; p̂q̂1, p̂q̂2) = (p̂q̂2q̂∗

1p̂∗)t p̂q̂1. It is now sufficient
to show that (p̂q̂2q̂∗

1p̂∗)t = p̂(q̂2q̂∗
1)

t p̂∗, because this gives
us (p̂q̂2q̂∗

1p̂∗)t p̂q̂1 = p̂(q̂2q̂∗
1)

t p̂∗p̂q̂1 = p̂ScLERP(t; q̂1, q̂2).
However, the power can be written as (p̂q̂2q̂∗

1p̂∗)t =
exp(t log(p̂q̂2q̂∗

1p̂∗)). Thanks to Lemma 14, we can derive

exp(t log(p̂q̂2q̂∗
1p̂∗)) = exp(tp̂ log(q̂2q̂∗

1)p̂
∗) =

= p̂exp(t log(q̂2q̂∗
1))p̂

∗ = p̂(q̂2q̂∗
1)

t p̂∗

which concludes the proof.

We therefore see that ScLERP is an interpolation with the same
behavior as SLERP, but generalized to SE(3). Now, we can use
ScLERP as the gold standard to compare DLB against. As shown
in Lemma 2 and Lemma 3, both methods are bi-invariant. Note that
from this follows the most important feature, i.e., that the error will
not be dependent on the choice of the coordinate systems (otherwise
the error could be unbounded). In fact, we can exploit this common
property of ScLERP and DLB to simplify their comparison.

Specifically, instead of comparing DLB(t; q̂1, q̂2) directly with
ScLERP(t; q̂1, q̂2), we rewrite them as DLB(t;1, q̂2q̂∗

1)q̂1 and
ScLERP(t;1, q̂2q̂∗

1)q̂1, which is correct because of right-invariance.
Since q̂1 is the same in both expressions, it is sufficient to compare
just DLB(t;1, q̂2q̂∗

1) with ScLERP(t;1, q̂2q̂∗
1), which is an easier

problem. As q̂2q̂∗
1 is a unit dual quaternion, it can be written as

q̂2q̂∗
1 = cos α̂

2 + n̂sin α̂
2 . This enables us to derive

DLB(t;1, q̂2q̂∗
1) =

1− t + tq̂2q̂∗
1

‖1− t + tq̂2q̂∗
1‖

=
1− t + t cos(α̂

2)+ n̂t sin(α̂
2)

‖1− t + tq̂2q̂∗
1‖

ScLERP(t;1, q̂2q̂∗
1) = (q̂2q̂∗

1)
t = cos

(
t
α̂
2

)
+ n̂sin

(
t
α̂
2

)

from which we see that both DLB and ScLERP use the same, con-
stant screw axis n̂.

Therefore, the one difference between DLB and ScLERP can only
be in the motion along the screw axis, i.e., in the angle of rota-
tion and amount of translation. Since DLB(t;1, q̂2q̂∗

1) is a unit dual
quaternion, we can also write it in the form

DLB(t;1, q̂2q̂∗
1) = cos

β̂t

2
+ n̂sin

β̂t

2

10

By considering only the scalar part of this equation, we see that

cos
β̂t

2
=

1− t + t cos(α̂
2)

‖1− t + tq̂2q̂∗
1‖

(13)

It is possible to compute an upper bound on the difference between
DLB and ScLERP by expressing the dual angle β̂t from Equa-
tion (13) and comparing it with ScLERP’s dual angle α̂t. This is not
difficult but requires a lengthy mathematical analysis: we therefore
employed Maple to carry out the computations (see Appendix B).
The result is that the angles of rotation in DLB and ScLERP always
differ by less than 8.15 degrees (which is in accordance with the
results reported in [Kavan and Žára 2005] for the case of regular
quaternions). The amount of translation always differs by less than
15.1% of the translation present in q̂2q̂∗

1. Note that these results are
upper bounds – in practice, the difference is usually much smaller.
Therefore, in applications such as skinning, the difference between
DLB and ScLERP will most likely not be visible at all, although
this would need to be verified with a perceptual study.

The same is true for n > 2, even though the error analysis in this
more general case is not so simple. The problem is that the gener-
alization of SLERP for n > 2 leads to spherical averages proposed
in [Buss and Fillmore 2001]. Therefore, the gold standard of SE(3)
blending for more than two transformations involves generalizing
Buss and Filmore’s algorithms to unit dual quaternions (which is
non-trivial because the set of unit dual quaternions is not a hyper-
sphere). We discuss this in more detail in Appendix B.1.

4 Implementation Notes

Equation (11) is the key to fast and plausible skinning. In this sec-
tion, we discuss the implementation issues on a typical heteroge-
neous architecture consisting of a CPU and GPU. The first step is to
convert the skinning matrices C1, . . . ,Cp (where p is the total num-
ber of joints) to dual quaternions q̂1, . . . , q̂p, unless our application
works with them already. This will typically be done on a CPU and
does not take long, because the conversion to a dual quaternion in-
volves just one quaternion multiplication and the number of joints
p is usually quite small. Let us recall a concise multiplication for-
mula for regular quaternions. If two regular quaternions q1,q2 are
written using their scalar and vector parts, i.e., q1 = a1 + r1 and
q2 = a2 +r2, then their multiplication can be expressed as

q1q2 = a1a2 −〈r1,r2〉+a1r2 +a2r1 +r1 ×r2 (14)

The resulting dual quaternions q̂1, . . . , q̂p are then sent to the GPU
as uniform parameters, each represented by a 2×4 matrix.

The skin deformation, i.e., the DLB itself and the vertex and nor-
mal transformations take place in the vertex shader. In contrast to
our previous approach [Kavan et al. 2007], we do not convert the
resulting unit dual quaternion to an homogeneous matrix, but ap-
ply it directly to transform each vertex and normal (which results in
shorter vertex shader code). The first step of DLB(w; q̂ j1 , . . . , q̂ jn),
i.e., the computation of the linear combination b̂ = ∑n

i=1 wiq̂ ji , is
straightforward, as it consists only of a per-component linear com-
bination. However, the subsequent normalization, i.e., the compu-
tation of b̂′ = b̂/‖b̂‖ can be optimized as follows.

If the non-dual and dual parts of b̂ are b0 and bε , then the norm is

‖b̂‖ = ‖b0‖+ ε 〈b0,bε 〉
‖b0‖ , according to Equation (22). The inverse is

given by
1

‖b̂‖ =
1

‖b0‖
− ε

〈b0,bε〉
‖b0‖3

according to Equation (18). Therefore,

b̂′ =
b̂

‖b̂‖ = (b0 + εbε)
1

‖b̂‖ =
b0

‖b0‖︸ ︷︷ ︸
b̂′

0

+ε
(

bε
‖b0‖ − b0〈b0,bε〉

‖b0‖3

)
︸ ︷︷ ︸

b̂′
ε

So, the rotational part of b̂′ is b′
0 = b0

‖b0‖ and the translation is given

by the vector part of 2b′
ε(b′

0)
∗. The latter expands to

2b′
ε(b

′
0)

∗ = 2

(
bε
‖b0‖

− b0〈b0,bε〉
‖b0‖3

)
b∗

0

‖b0‖
= 2

(
bε b∗

0

‖b0‖2 − 〈b0,bε〉
‖b0‖2

)

Since the scalar part of 2b′
ε(b

′
0)

∗ = 0 (because b̂′ is unit), it means
that there is no need to evaluate 〈b0,bε〉/‖b0‖2, because its pur-
pose is only to cancel out the scalar part of bε b∗

0/‖b0‖2. Therefore,
we can compute the translational part of the matrix M just by com-
puting the vector part of 2bε b∗

0/‖b0‖2 (and its scalar part can be
safely ignored). This means that instead of computing the full dual
quaternion normalization, all we need to compute is c0 = b0/‖b0‖
and cε = bε/‖b0‖ and retrieve the translation as the vector part of
2cε c∗0, which can be done efficiently using Equation (14).

The regular quaternion c0 is used to rotate the input vertex v and the
normal vn. The key to a fast GPU implementation is the following
classical formula [Shreiner et al. 2007], which describes how to
efficiently express quaternion rotation in terms of cross products.

Lemma 4. Let q = a+ r be a unit regular quaternion with scalar
part a and vector part r. Rotation of a vector (v0,v1,v2) repre-
sented by the regular quaternion v = v0i + v1 j + v2k can be com-
puted as

v′ = v+2r× (r×v+av) (15)

where v′ is the vector v rotated by q.

Proof. The proof consists of re-arranging the well-known expres-
sion v′ = qvq∗. Using Equation (14), we can expand

v′ = qvq∗ = (a+r)v(a−r) = (−〈r,v〉+av+r×v)(a−r) =

= −a〈r,v〉+a〈v,r〉+ 〈r,v〉r+a2 v+a(r×v)−a(v×r)−
(r×v)×r =

= 〈r,v〉r+a2v+2a(r×v)+r× (r×v)

Recall Lagrange’s formula

r× (r×v) = r〈r,v〉−v〈r,r〉
which, added to the previous equation, results in

v′ = 〈r,v〉r+a2v+2a(r×v)+2r× (r×v)−r〈r,v〉+v〈r,r〉 =

= v(a2 +‖r‖2)+2a(r×v)+2r× (r×v)

from which Equation (15) readily follows.

Note that the shader compiler could, in theory, perform the opti-
mizations of qvq∗ itself. However, according to our experiments,
shader compilers produce suboptimal code when compared to im-
plementation of Equation (15) (which translates to efficient code
easily as modern GPUs provide fast cross product operations). An
optimized dual quaternion skinning implementation can thus be
summarized as Algorithm 1.

The resulting algorithm is encouragingly simple. However, ac-
tual vertex shader code would add some lighting computations and
transformation by the model-view-projection matrix.

11

Algorithm 1

Input: dual quaternions q̂1, . . . , q̂p (uniform parameters)
vertex position v and normal vn
joints indices j1, . . . , jn and weights w1, . . . ,wn

Output: transformed vertex position v′ and normal v′n

b̂ = w1q̂ j1 + . . .+wnq̂ jn
// denote the non-dual part of b̂ as b0 and the dual one as bε
c0 = b0/‖b0‖
cε = bε/‖b0‖
// denote the scalar part of c0 as a0 and its vector part as d0
// denote the scalar part of cε as aε and its vector part as dε
v′ = v+2d0 × (d0 ×v+a0v)+2(a0dε −aε d0 +d0 ×dε)
v′n = vn +2d0 × (d0 ×vn +a0vn)
// note that v′n must be transformed by the inverse transpose ma-
trix

4.1 Coping with Antipodality

Conversion of homogeneous matrices to dual quaternions is
straightforward, up to the point where an appropriate sign for the
resulting dual quaternion must be chosen. Due to dual quaternion
antipodality, both q̂i and −q̂i represent the same rigid transforma-
tion, but their interpolation can be different (see Figure 22). The
problem is exactly the same as for regular quaternions and occurs
with all previous quaternion-based methods [Hejl 2004; Kavan and
Žára 2005]. In the following, we restrict ourselves to the case of
regular quaternions (as generalization to dual quaternions is triv-
ial).

In the case of only two regular quaternions q j1 ,q j2 (i.e., in the case
of classical SLERP [Shoemake 1985]), the situation is simple: we
take either q j2 or −q j2 , whichever gives a non-negative dot product
with q j1 . In the general case (n > 2), we can by analogy require a
non-negative dot product for all pairs of the resulting quaternions.
More formally, we are looking for n numbers s1, . . . ,sn ∈ {0,1}
such that the following holds

∀h, i ∈ {1, . . . ,n} : 〈(−1)sh q jh ,(−1)si q ji〉 ≥ 0 (16)

A sequence of s1, . . . ,sn will be called valid if it satisfies Equa-
tion (16). With dual quaternions, the only difference is that the dot
product in Equation (16) is taken only between the non-dual parts
of q̂ jh , q̂ ji (to keep the notation simpler, we thus discuss only the
regular quaternion case). A very simple algorithm to find s1, . . . ,sn
follows.

Algorithm 2

Input: Regular quaternions q j1 , . . . ,q jn
Output: Sequence s1, . . . ,sn ∈ {0,1}

s1 = 0
for i = 2 to n do

if 〈q j1 ,q ji〉 ≥ 0 then
si = 0

else
si = 1

end if
end for

Note that Algorithm 2 is already commonly known, for example
in the gaming community. In the light of the more sophisticated
techniques of [Park et al. 2002; Johnson 2003], we initially con-
jectured that this algorithm provides just an approximate solution.

However, as we show below, the algorithm actually always finds a
valid sequence s1, . . . ,sn, if one exists.

Lemma 5. If there exists a valid sequence s1, . . . ,sn ∈ {0,1} for
regular quaternions q j1 , . . . ,q jn , then Algorithm 2 finds one of the
valid sequences.

Proof. First of all, note that if s′1, . . . ,s
′
n is valid, then so is 1 −

s′1, . . . ,1 − s′n, as negating both quaternions does not change the
sign of the dot product in Equation (16). Therefore, if a valid se-
quence exists then we can assume that the sequence may be given
as r1, . . . ,rn ∈ {0,1} such that r1 = 0. We show that our algorithm
will return si = ri for i = 1, . . . ,n. This is obviously true for i = 1,
as s1 = r1 = 0. For i > 1, we know that

〈q j1 ,(−1)ri q ji〉 ≥ 0

because the sequence r1, . . . ,rn is valid. The case of ri = 0 means
that 〈q j1 ,q ji〉 ≥ 0 and therefore our algorithm sets also si = 0. In
the case of ri = 1, we have 〈q j1 ,q ji〉< 0, so the ’else’ branch in the
if-statement is taken and the algorithm sets si = 1.

In extreme situations, it is possible that no valid sequence exists.
This means that for any choice of signs si, there will always exist a
pair of rotations that will be interpolated along the longer path, see
Figure 22. Luckily, such situations almost never occur in skinning.

Even though our antipodality resolution algorithm is quite simple
and fast, it needs to be executed in the vertex shader, because it
depends on the joint set j1, . . . , jn influencing a particular vertex.
If a shorter vertex shader code is required, it is possible to resort
to the following approximate method, which does not guarantee a
valid sequence even if one exists. However, it allows the signs to be
pre-computed before sending dual quaternions to the GPU, so the
vertex shader will not have to care about antipodality. The idea is
simple: we assume that each joint in the actual skeleton posture has
rotated by less than 180 degrees with respect to its parent (i.e., has
taken the shorter path). This assumption is practically always valid
with character models, as joint rotations larger than 180 degrees are
not normally possible. Therefore, we can set s1 = 0 and select the
remaining signs s2, . . . ,sn so that

∀i ∈ {2, . . . ,n} : 〈(−1)sπ(i)qπ(i),(−1)si qi〉 ≥ 0

where π(i) denotes the parent joint of joint i. An algorithm to
find these signs is a simple modification of Algorithm 2. Even
though, theoretically, this algorithm does not necessarily produce
valid signs for every vertex, we have not encountered any problems
with our test data.

4.2 Non-rigid Joint Transformations

Dual quaternions cannot represent non-rigid transformations, such
as scale and shear. This means that dual quaternion skinning, unlike
linear blend skinning, is restricted only to rotating and/or translat-
ing joints. This does not seem prohibitive at first, given that any
physical joints can also only rotate and/or translate. However, vir-
tual characters can benefit from allowing non-rigid transformations.
For example, non-uniform scaling can be applied to vary a charac-
ter’s proportions without having to modify the 3D model itself – a
useful feature, for example in crowd animation. Some artists also
use non-uniformly scaling joints to imitate muscle bulging and sim-
ilar effects (which can even be done automatically as discussed by
Mohr and Gleicher [2003]).

A natural way to support non-rigid transformations would be
via higher-dimensional geometric algebras, which generalize dual

12

first phase second phase

Figure 12: Adding scale transformations: in the first phase, we re-scale the mesh in the rest-pose. In the second phase, rigid joint transforma-
tions are applied using dual quaternion skinning.

quaternions. For example, 5D conformal geometric algebra [Ware-
ham et al. 2005] supports rigid transformations along with a dila-
tion (uniform scale). Unfortunately, to support the whole range of
non-rigid transformations, including non-uniform scale and shear,
one would have to move to even higher dimensional geometric alge-
bras, suggesting a great cost (as an n-dimensional geometric algebra
requires 2n coordinates). Even though this approach would be the-
oretically interesting, for practical purposes we propose a simpler
way of incorporating non-rigid transformations.

The idea is to separate the joint transformations into non-rigid and
rigid parts and perform skinning in two phases. In the first phase,
we deal with the non-rigid portion of the transformations, inflating
the rest-pose mesh as required. In the second phase, we apply the
rigid part to bend the mesh to the final shape. As no rotations are
involved in the first pass, we can safely apply linear blending of
transformation matrices [Shoemake and Duff 1992]. As only rigid
transformations are involved in the second pass, we can apply dual
quaternion skinning as described in Section 4. Composition of both
steps yields the desired result, see Figure 12. Note that Kurihara
and Nishita [2007] proposed a similar technique independently.

To decompose each skinning matrix Ci, i = 1, . . . , p into a non-rigid
and rigid part, we could apply polar decomposition [Shoemake and
Duff 1992]. However, a more efficient solution is possible when
considering how the matrices Ci are formed from individual joint
transformations. Note that this would not work if no skeleton is
present [James and Twigg 2005]. However, most character anima-
tion systems use skeletal animation. In the following we therefore
assume we have a skeleton. Let us denote the transformation from
the model coordinate system (frame) to joint i’s frame in the rest-
pose as Ai (absolute matrix) and the transformation from the model
frame to joint i in the animated skeleton as Fi (final matrix). Then
the skinning transformation Ci (composed matrix) can be written as
Ci = Fi(Ai)−1.

The absolute matrix Ai is simply a concatenation of individual joint
transformations, i.e.,

Ai = R1 . . .Rπ(i)Ri

where π(i) denotes the parent joint of joint i and Ri is a “relative
matrix” describing the transformation from joint π(i) to i in the
rest-pose skeleton. Matrix R1 describes the root joint transforma-
tion with respect to the model coordinate system (often R1 = I, as
the root is usually placed at the origin). Note that matrices Ri are
assumed to be rigid.

The final matrix Fi is formed in a similar way, but accounting for
the joint transformations Ti ∈ SE(3)

Fi = R1T1 . . .Rπ(i)Tπ(i)RiTi

In order to enable non-rigid joint transformations, we could simply
multiply Ti with a scale/shear matrix Si. Even though our proposed

method works in this case as well, we did not find it practical, be-
cause the scale/shear transformation Si affects all descendants of
joint i. For example, when scaling a spine joint (e.g., to obtain
a larger belly), vertices of the arms get scaled in the same direc-
tion, which is typically not desirable. Therefore, we propose the
scale/shear transformation Si to be considered local, i.e., to affect
only joint i’s transformation. In our opinion, this results in more
intuitive editing, as one usually wants to enlarge/thicken individual
joints rather than the whole sub-tree.

According to the two-phase skinning paradigm introduced above,
we define different matrices for each phase: A′

i,F
′
i ,C

′
i for phase

one, and A′′
i ,F ′′

i ,C′′
i for phase two. Concerning the first phase,

A′
i = R1 . . .Rπ(i)Ri as before, but

F ′
i = R′

1 . . .R′
π(i)R

′
iSi

where R′
k,k = 1, . . . , i, is matrix Rk with its translational part scaled

by Sπ(k) (rotational part being kept intact). This is to account for
bone elongations caused by the non-rigid transformation present in
the parent joint (note that R′

1 = R1). The composed matrix for the
first phase, C′

i = F ′
i (A

′
i)
−1, thus performs local scaling of joint i in

the rest-pose (see Figure 12).

Concerning the second phase, the absolute matrix of joint i is

A′′
i = R′

1 . . .R′
π(i)R

′
i = F ′

i S−1
i

i.e., the final matrix of the first phase without the scale/shear factor
Si. The final matrix of the second phase deals with the joint rigid
transformations Ti

F ′′
i = R′

1T1 . . .R′
π(i)Tπ(i)R

′
iTi

and thus differs from the original final matrix Fi just by employing
the elongated bone transformations R′

i. Therefore, the composed
matrix of the second phase, C′′

i = F ′′
i (A′′

i)−1, is rigid.

It is simple to modify the vertex shader code from Section 4 in order
to implement this method. Matrices C′′

i , i = 1, . . . , p are converted
to dual quaternions q̂i, which are passed to the GPU along with
matrices C′

i , i = 1, . . . , p. In the vertex shader, for a given vertex
v associated with joints j1, . . . , jn with weights w1, . . . ,wn, we first
transform the vertex by ∑n

i=1 w jiC
′
ji and then by the blended dual

quaternion as in Section 4. We deal with vertex normals in a similar
way, just applying the inverse transpose of ∑n

i=1 w jiC
′
ji
. The results

of this method are shown in Figure 13, while the performance issues
are discussed in the next section.

5 Results and Comparison

In our experiments, we use a human model with 5002 vertices,
9253 triangles and 54 joints. First, we consider only rigid joint

13

Figure 13: Proportions of the original model (left) are changed by
applying non-uniform scaling to the character’s arms (right). Our
technique allows scaling transformations to be combined with dual
quaternion skinning (top), thus achieving more realistic deforma-
tions than with linear blend skinning (bottom).

Figure 14: Comparison of linear (left) and dual quaternion (right)
blending. Dual quaternions preserve rigidity of input transforma-
tions and therefore avoid skin collapsing artifacts.

transformations and compare the proposed dual quaternion skin-
ning with linear blending, direct quaternion blending [Hejl 2004],
log-matrix blending [Cordier and Magnenat-Thalmann 2005] and
spherical blend skinning [Kavan and Žára 2005]. As discussed in
Section 2.2, some artifacts are better visualized on a simple model
of cloth (6000 vertices, 12000 triangles and 49 joints). Note that
the only variable in our experiments is the transformation blend-
ing – the input data (model files and postures) are always the same.
The visual results confirm that our DLB method is indeed free of all
the artifacts exhibited by previous methods (see Figures 14, 15, 16
and 17).

In order to compare computational performance, we have imple-
mented both CPU and GPU versions of dual quaternion skinning.

Figure 15: Comparison of direct quaternion blending (left) and dual
quaternion (right) blending. Only the latter delivers smooth defor-
mation.

The average performance of the CPU implementations is reported
in Figure 18 and the number of instructions of our vertex shaders
can be found in Figure 19. Note that our implementation of
log-matrix blending uses an optimization for rigid transformations
based on the Rodrigues formula, as suggested in [Alexa 2002]. Our
vertex shader assumes n = 4 (which is common due to graphics
hardware considerations) and does not perform any optimizations
if there are fewer than 4 influencing joints.

From the measurements, we see that dual quaternion, linear and
direct quaternion blending [Hejl 2004] have quite similar perfor-
mance both on the GPU and CPU. Although our algorithm is
slightly slower than both linear and direct quaternion blending, we
believe that this is not a high price to pay for the elimination of arti-
facts. When compared to log-matrix and spherical blending, we see
that dual quaternion skinning is more than twice as fast (and also
much easier to implement).

Figure 16: Comparison of log-matrix (left) and dual quaternion
(right) blending. The shortest-path property of dual quaternion
blending guarantees natural skin deformations.

14

90 degrees 179 degrees 181 degrees 270 degrees

Figure 20: Example of a skin flipping artifact caused by the shortest path property. When rotating from 179 to 181 degrees, skin discontinu-
ously changes its shape, because the other rotation direction becomes shorter.

Figure 17: Comparison of spherical (left) and dual quaternion
(right) blending. Dual quaternions do not need to cluster vertices
and therefore naturally avoid artifacts.

0

4

8

12

LBS

3.67

Log

11.78

SBS

10.83

DLB

5.07

QB

4.66

[ms]

Figure 18: Average CPU performance for skin deformation of the
human model in milliseconds (Pentium 4, 3.4 GHz): LBS – linear
blend skinning, QB – direct quaternion blending, Log – log-matrix
blending, SBS – spherical blend skinning, DLB – dual quaternion
linear blending (pre-computed antipodality).

Linear blend skinning supports non-rigid transformations at no ex-
tra cost, which is a big advantage. Previous techniques, i.e., direct
quaternion blending, log-matrix blending and spherical blend skin-
ning, considered only rigid transformations. Our method to add
scale/shear transformations presented in Section 4.2 requires an ex-
tra set of 3× 4 matrices to be passed to the GPU (along with dual
quaternions), which means that we need in total 20 scalars per joint

LBS QB DLB DLB'

36
33

43

52

0

10

20

30

40

50

60 [#]of instructions

QB'

42

Figure 19: Number of vertex shader instructions: LBS – linear
blend skinning, QB – direct quaternion blending (pre-computed an-
tipodality), DLB – dual quaternion linear blending (pre-computed
antipodality), QB′ and DLB′ – same as before but with antipodality
resolved in the vertex shader.

(compare with the 12 required by linear blend skinning and the 8
required by standard dual quaternion skinning).

The two-phase skinning also has an impact on the run-time perfor-
mance, requiring an extra 29 shader instructions to blend matrices
C′

1, . . . ,C
′
n (for n = 4). This means that we end up with about twice

as many instructions as required for linear blend skinning. This
may or may not be an issue, depending on where the bottlenecks of
our application are and what the target hardware is.

The comparison of dual quaternion skinning to the Animation
Space method [Merry et al. 2006] is somewhat troublesome. Ac-
cording to our discussion with the author of Animation Space
[Merry 2007], it is likely that no objective experimental comparison
is possible, because the modelling methods are different (in partic-
ular, Animation Space makes use of additional examples). There-
fore, it would be hard to judge if a particular result was due to the
properties of the algorithm itself or simply how much effort went
into the modelling.

6 Conclusions and Future Work

In this paper, we propose a novel skinning method based on the
blending of dual quaternions. Our method is efficient, simple to
implement and does not require the modification of existing mod-
els or authoring tools (advanced methods exploiting the linearity
of linear blend skinning, such as [Mohr and Gleicher 2003], could
be adapted). We therefore believe that it provides a highly practi-
cal alternative to the popular but inaccurate linear blend skinning
method.

However, the proposed algorithm has some limitations. When non-
rigid joint transformations are required, our method requires longer
shader code and more memory than linear blend skinning. Another

15

potential shortcoming of dual quaternion skinning could be a “flip-
ping artifact”, which occurs with joint rotations of more than 180
degrees, see Figure 20. This is a corollary of the shortest path prop-
erty: when the other path becomes shorter, the skin changes its
shape discontinuously. An alternative would be to support multi-
ple revolutions and count the number of twists. Even though this
would produce continuous deformations, it is doubtful whether the
final animation would look more natural. In most situations, how-
ever, this is not an issue as extreme rotations leading to flipping
artifacts are usually prevented via joint constraints.

Taking a broader perspective, blending of dual quaternions has po-
tentially many more applications, not limited to skinning. More
generally, it is a method for rigid transformation blending with in-
teresting properties. Therefore, it could potentially be useful in
contexts such as motion blending, analysis or compression [Alexa
2002]. The investigation of other applications of dual quaternions
in computer graphics promises to be an interesting area for future
work.

6.1 Implementation

In order to facilitate further research and experiments, we have
provided some on-line resources:
http://isg.cs.tcd.ie/projects/DualQuaternions/
Specifically, C source code converting between dual quaternions
and (quaternion,translation) pairs is available, along with Cg
vertex shaders that implement our skinning methods.

7 Acknowledgements

We wish to thank the anonymous reviewers for their valuable com-
ments, Bruce Merry for discussion on Animation Space and Carlo
H. Séquin for early insights into the topic. We acknowledge the
support of the Higher Education Authority of Ireland and Science
Foundation Ireland. This work has been partly supported by the
Ministry of Education of the Czech Republic under the research
programs LC-06008 (Center for Computer Graphics) and MSM
6840770014.

A Dual Quaternion Tutorial

Dual quaternions are not a standard tool in computer graphics,
in contrast to regular quaternions. Basic information about them
can be found in the literature [Bottema and Roth 1979; McCarthy
1990], which provides a good theoretical background, but without
information about applications in computer graphics. In order to
bridge this gap, in this appendix we provide a brief tutorial summa-
rizing the properties which are most important to computer graph-
ics practitioners. We assume that the reader is already familiar with
regular quaternions, otherwise see for example [Dam et al. 1998;
Hanson 2006]. Dual quaternions can be considered as quaternions
whose elements are dual numbers. Let us therefore start our discus-
sion with this simpler algebra.

A.1 Dual Numbers

The algebra of dual numbers, denoted as R̂, is similar to complex
numbers: any dual number â can be written as â = a0 + εaε , where
a0 is the non-dual part, aε the dual part and ε is a dual unit sat-
isfying ε2 = 0. The dual conjugate is analogous to the complex
conjugate: â = a0 − εaε . Multiplication of two dual numbers is
given as

(a0 + εaε)(b0 + εbε) = a0b0 + ε(a0bε +aε b0) (17)

The following lemma establishes that the dual conjugate behaves
like the complex conjugate with respect to multiplication.

Lemma 6. For any â, b̂ ∈ R̂, it is true that âb̂ = â b̂.

Proof.

âb̂ = a0b0 + ε(a0bε +aε b0) =

= a0b0 − ε(a0bε +aε b0) = (a0 − εaε)(b0 − εbε) = â b̂

The following lemmas present the formulas for dual quaternion in-
version and square root.

Lemma 7. The inverse of a dual number a0 +εaε ∈ R̂, where a0 �=
0, is given as

1
a0 + εaε

=
1
a0

− ε
aε
a2

0

(18)

Proof. In order to find the inverse of a dual number a0 + εaε , we
have to solve for b0,bε in the following equation

(a0 + εaε)(b0 + εbε) = 1

Using Equation (17), this reduces to the following two equations:

a0b0 = 1

a0bε +aε b0 = 0

Therefore, b0 = 1/a0 and bε = −aε/a2
0, provided that a0 �= 0.

Note that purely dual numbers, that is dual numbers with a0 = 0, do
not have an inverse. This is a fundamental difference from complex
numbers, because every non-zero complex number has an inverse.

Lemma 8. The square root of a dual number a0 + εaε ∈ R̂, such
that a0 > 0 is given as

√
a0 + εaε =

√
a0 + ε

aε
2
√

a0
(19)

Proof. To find the square root of a dual number a0 + εaε , we have
to solve the following equation

(b0 + εbε)2 = a0 + εaε

Writing out the non-dual and dual components, we obtain

b2
0 = a0, 2b0bε = aε

from which the formula for dual square root readily follows (pro-
vided that a0 > 0).

Finally, note that the Taylor series of a function of dual argument
reduces to a finite sum

f (a0 + εaε) = f (a0)+ εaε f ′(a0)

because the higher powers of ε are zero. For example, dual sine and
cosine functions are therefore given as

sin(a0 + εaε) = sin(a0)+ εaε cos(a0) (20)

cos(a0 + εaε) = cos(a0)− εaε sin(a0) (21)

16

A.2 Dual Quaternions

A dual quaternion q̂ can be written as q̂ = ŵ+ ix̂+ jŷ+kẑ, where ŵ
is the scalar part (dual number), (x̂, ŷ, ẑ) is the vector part (dual vec-
tor), and i, j,k are the usual quaternion units. The dual unit ε com-
mutes with quaternion units, for example iε = εi. Just like ordinary
quaternions, dual quaternions are also associative, distributive, but
not commutative. A dual quaternion can also be considered as an
8-tuple of real numbers, or as the sum of two ordinary quaternions,
q̂ = q0 + εqε . Conjugation of a dual quaternion is defined using
classical quaternion conjugation: q̂∗ = q∗

0 + εq∗
ε . However, dual

number conjugation also applies to dual quaternions: q̂ = q0−εqε ,
so we end up with two different conjugations (and we will actually
need both of them). It is not difficult to verify that the order in
which the conjugations are performed does not matter

q̂∗ = q∗
0 + εq∗

ε = q∗
0 − εq∗

ε = (q0 − εqε)∗ = q̂
∗

The norm of a dual quaternion is defined as ‖q̂‖ =
√

q̂∗q̂ =
√

q̂q̂∗.
It is possible to simplify this expression, as is shown in the follow-
ing lemma.

Lemma 9. For any dual quaternion q̂ = q0 +εqε , such that q0 �= 0,
the norm can be written as

‖q̂‖ = ‖q0‖+ ε
〈q0,qε〉
‖q0‖ (22)

Proof. Let us first expand

q̂∗q̂ = (q∗
0 + εq∗

ε)(q0 + εqε) = q∗
0q0 + ε(q∗

ε q0 +q∗
0qε) =

= ‖q0‖2 +2ε〈q0,qε〉
By taking the dual square root (Equation (19)), we obtain the final
formula.

Unit dual quaternions are those satisfying ‖q̂‖ = 1. According
to the previous lemma, a dual quaternion q̂ is unit if and only if
‖q0‖ = 1 and 〈q0,qε〉 = 0. We denote the set of unit dual quater-
nions as Q̂1. Geometrically, Q̂1 is a 6-dimensional manifold em-
bedded in 8-dimensional Euclidean space (called an image-space
of dual quaternions [McCarthy 1990]).

Dual quaternions inherit many properties of regular quaternions.
The following lemma states that conjugation of dual quaternions
also swaps the order of multiplication (as is the case with regular
quaternions).

Lemma 10. For any dual quaternions p̂, q̂, it is true that

(p̂q̂)∗ = q̂∗p̂∗ (23)

Proof. This is easy to verify by direct computation

(p̂q̂)∗ = (p0q0 + ε(pε q0 +p0qε))∗ =
= (p0q0)∗ + ε((pε q0)∗ +(p0qε)∗) =
= q∗

0p∗
0 + ε(q∗

0p∗
ε +q∗

ε p∗
0) = q̂∗p̂∗

Another important property (again analogous to regular quater-
nions) is so called multiplicative property of the dual quaternion
norm.

Lemma 11. For any dual quaternions p̂, q̂, it is true that

‖p̂q̂‖ = ‖p̂‖‖q̂‖ (24)

Proof. Using Lemma 10 and the fact that a dual number commutes
with a dual quaternion, we can compute

‖p̂q̂‖2 = (p̂q̂)∗(p̂q̂) = q̂∗p̂∗p̂q̂ = ‖p̂‖2q̂∗q̂ = ‖p̂‖2‖q̂‖2

Taking the dual square root on both sides concludes the proof.

The inverse of a dual quaternion is defined only when q0 �= 0. In
this case, we have

q̂−1 =
q̂∗

‖q̂‖2

Note that the inverse of a unit dual quaternion is just conjugation.

Let us now turn our attention to the representation of rigid trans-
formations using dual quaternions. As expected, unit dual quater-
nions naturally represent 3D rotation, when the dual part qε = 0.
If we have a 3D vector (v0,v1,v2), we define the associated unit
dual quaternion as v̂ = 1+ ε(v0i + v1 j + v2k). The rotation of vec-
tor (v0,v1,v2) by a dual quaternion q̂ can then be written as q̂v̂q̂∗.
This can be easily verified, because if qε = 0 then q̂ = q0 and q̂v̂q̂∗
simplifies to

q0(1+ ε(v0i+v1 j +v2k))q∗
0 = 1+ εq0(v0i+v1 j +v2k)q∗

0

where q0(v0i + v1 j + v2k)q∗
0 is the familiar formula for rotation by

a regular quaternion.

What is interesting is that dual quaternion multiplication can also
represent 3D translation. A unit dual quaternion t̂, defined as

t̂ = 1+
ε
2
(t0i+ t1 j + t2k)

corresponds to translation by vector (t0,t1,t2) (note that dual quater-
nions work with half of the translation vector, analogous to classical
quaternions, which work with half of the angle of rotation). To see
this, let us expand

t̂v̂t̂∗ = t̂(1+ ε(v0i+v1 j +v2k))
(

1+
ε
2
(t0i+ t1 j + t2k)

)
=

= t̂
(

1+ ε
((

v0 +
t0
2

)
i+
(

v1 +
t1
2

)
j +
(

v2 +
t2
2

)
k
))

=

= 1+ ε((v0 + t0)i+(v1 + t1) j +(v2 + t2)k),

which shows that the unit dual quaternion t̂ performs translation by
(t0,t1,t2).

General rigid transformation is a composition of rotation and trans-
lation. Therefore, let us first apply the regular quaternion q0 (rep-
resenting the rotational component) and then the dual quaternion t̂
(representing the translational component)

t̂(q0v̂q0
∗)t̂∗ = (t̂q0)v̂(q0

∗ t̂∗) = (t̂q0)v̂(q0
∗ t̂∗) = (t̂q0)v̂(t̂q0)∗

Therefore, we can see that t̂q0 is a dual quaternion that performs
rigid transformation. Expanding, we obtain

t̂q0 =
(

1+
ε
2
(t0i+ t1 j + t2k)

)
q0 = q0 +

ε
2
(t0i+t1 j+t2k)q0 (25)

Now we can state the following:

Lemma 12. Every rigid transformation can be represented by a
unit dual quaternion, and conversely, every unit dual quaternion
represents a rigid transformation.

Proof. The first part of the statement follows from Equation (25),
if we can show that t̂q0 is unit. However, both t̂ and q0 are unit and
therefore, using Equation (24), ‖t̂q0‖ = ‖t̂‖‖q0‖ = 1.

17

To prove the second part, we consider a unit dual quaternion p̂ =
p0 + εpε . We need to find (t0,t1,t2) and q0 so that

q0 +
ε
2
(t0i+ t1 j + t2k)q0 = p0 + εpε

Obviously, q0 = p0 and (t0,t1,t2) is given by the equation 1
2 (t0i +

t1 j + t2k)p0 = pε . This equation can be solved if we show that the
scalar part of pε p∗

0 is zero. However, the scalar part of pε p∗
0 is

equivalent to 〈pε ,p0〉, which is zero because p̂ is unit.

Let us assume that we already have a routine for conversion be-
tween a 3× 3 rotation matrix and a unit quaternion, as well as a
routine for quaternion multiplication. Equation (25) then shows
how to convert a 4× 4 rigid transformation matrix to a unit dual
quaternion. The opposite conversion, from a unit dual quaternion
q0 + εqε to a matrix is also straightforward. The rotation is just a
matrix representation of q0 and the translation is given by the vector
part of 2qε q∗

0. Note that the conversion routines in the C language
are available on our website (see Section 6.1).

Dual quaternion conjugations can be interpreted as follows. Unit
dual quaternion conjugate q̂∗ corresponds to the inverse transfor-
mation of q̂, as can be seen from Equation (25). The same equa-
tion reveals that dual-number-like conjugation, q̂, inverts transla-
tion only, leaving rotation intact. Both conjugations applied to-
gether, q̂∗, correspond to the inverse rigid transformation but with
the original translational part.

A.3 Connection to Spatial Kinematics

The geometric interpretation of regular quaternions follows from
the formula q = cos θ

2 + ssin θ
2 , which contains the axis of rotation

s and the angle of rotation θ . The following lemma generalizes that
to dual quaternions. In spite of the lengthier proof, it is important
because it reveals the geometrical interpretation of dual quaternions
and their connection to spatial kinematics (Chasles’ theorem).
Lemma 13. Let θ̂ ∈ R̂ and ŝ ∈ Q̂1 with zero scalar part. Then

q̂ = cos
θ̂
2

+ ŝ sin
θ̂
2

(26)

is a unit dual quaternion. Conversely, for every q̂ ∈ Q̂1, there exists
θ̂ ∈ R̂ and ŝ ∈ Q̂1 with zero scalar part such that Equation (26)
holds.

Proof. First, let us show that q̂ is always unit. Therefore, we ex-
pand Equation (26) to give

q̂ = cos
θ0 + εθε

2
+(s0 + εsε)sin

θ0 + εθε
2

and using Equations (20) and (21)

q̂ = cos
θ0

2
− ε

θε
2

sin
θ0

2
+(s0 + εsε)

(
sin

θ0

2
+ ε

θε
2

cos
θ0

2

)

isolating the non-dual and dual parts

q̂ = cos
θ0

2
+ s0 sin

θ0

2︸ ︷︷ ︸
q0

+ε
(

s0
θε
2

cos
θ0

2
− θε

2
sin

θ0

2
+ sε sin

θ0

2

)
︸ ︷︷ ︸

qε

To show that q̂ = q0 + εqε is unit, we have to show that ‖q0‖ = 1
and 〈q0,qε〉 = 0. Quaternion q0 is obviously unit (because s0 is).

To verify the second condition, we compute

〈q0,qε〉 =
〈

s0 sin
θ0

2
,s0

θε
2

cos
θ0

2
+ sε sin

θ0

2

〉
− θε

2
sin

θ0

2
cos

θ0

2

=
θε
2

sin
θ0

2
cos

θ0

2
− θε

2
sin

θ0

2
cos

θ0

2
= 0

because 〈s0,s0〉 = 1 and 〈s0,sε 〉 = 0.

To prove the second part of the statement, let us assume that q̂ ∈ Q̂1
is fixed. The task is to find θ̂ = θ0 + εθε and ŝ = s0 + εsε so that
Equation (26) holds. According to Lemma 12, we know that q̂
can be written as q̂ = q0 + ε

2 tq0. As q0 = cos θ0
2 + s0 sin θ0

2 , the
unknowns θ0 and s0 are given by converting q0 to an axis-angle
representation. Now we must find θε and sε , which are given by

1
2

tq0 = s0
θε
2

cos
θ0

2
− θε

2
sin

θ0

2
+ sε sin

θ0

2
(27)

Let us expand the left-hand side, i.e., write out the quaternion prod-
uct using Equation (14)

1
2

tq0 =
1
2

t
(

cos
θ0

2
+ s0 sin

θ0

2

)
=

=
1
2

tcos
θ0

2
− 1

2
sin

θ0

2
〈t,s0〉+ 1

2
(t× s0)sin

θ0

2
(28)

We will consider three cases: (i) q0 = 1, (ii) q0 =−1, (iii) q0 �=±1.
In the first case, we can set θ0 = 0. The Equations (27) and (28) thus
reduce to

θε
2

s0 =
1
2

t

Therefore, it is sufficient to set θε = ‖t‖ and s0 = t/‖t‖, while sε
can be, for example, the zero vector. The second case is quite sim-
ilar, except that we assume θ0 = 2π . The choice of θε ,s0 and sε is
the same as in the previous case.

In the last case, when q0 �= ±1, we know that θ0 �= 2kπ for any
integer k. By comparing the scalar parts of Equations (27) and (28),
we obtain

−θε
2

sin
θ0

2
= −1

2
sin

θ0

2
〈t,s0〉

Since sin θ0
2 �= 0, this simplifies to θε = 〈t,s0〉, yielding the formula

for θε . Comparison of the vector parts of Equations (27) and (28)
gives

s0
θε
2

cos
θ0

2
+ sε sin

θ0

2
=

1
2

tcos
θ0

2
+

1
2
(t× s0)sin

θ0

2

This allows us to express sε explicitly

sε sin
θ0

2
=

1
2

(t− s0θε)cos
θ0

2
+

1
2
(t× s0)sin

θ0

2

sε =
1
2

(t− s0θε)cotan
θ0

2
+

1
2
(t× s0)

The expression of sε can be simplified, if we recall that θε = 〈t,s0〉
and, using Lagrange’s equation, t− s0〈t,s0〉 = (s0 × t)× s0. This
enables us to write

sε =
1
2

(
(s0 × t)cotan

θ0

2
+ t
)
× s0 (29)

From this expression we see that obviously 〈s0,sε 〉 = 0 and there-
fore, ŝ0 ∈ Q̂1, as required.

18

Intuitively speaking, Lemma 13 states that any unit dual quaternion
is composed of parameters θ0,θε ,s0 and sε . As we can see from the
proof, θ0 is the angle of rotation, and unit vector s0 represents the
direction of the axis of rotation (in the degenerate case with θ0 = 0
or θ0 = 2π , s0 represents the direction of the translation vector).
Furthermore, θε = 〈t,s0〉 is the amount of translation along vector
s0. The only slightly less intuitive variable is sε . However, if we
recall Equation (4), we observe that the term

r =
1
2

(
(s0 × t)cotan

θ0

2
+ t
)

that occurs in Equation (29) in the form sε = r× s0 is the center
of rotation. Therefore, we can conclude that the variables θ0,θε ,s0
and sε are parameters of the associated screw motion.

There is a close connection with a classical result of spatial kine-
matics known as Chasles’ theorem [Murray et al. 1994]. Chasle’s
theorem states that any rigid transformation can be described by
a screw, i.e., rotation about an axis followed by translation in the
direction of that axis. For example, in Figure 21 top, we have a
teapot which is first rotated about axis s0,‖s0‖ = 1, and then trans-
lated by vector t. The translation vector t can be decomposed to
t0 = t‖ + t⊥, where t‖ is the component parallel to s0 and t⊥ is the
component orthogonal to s0 (formally, t‖ = s0〈s0, t〉, t⊥ = t− t‖).
The component t⊥ lies in the plane with normal s0, and therefore
can be recovered by selecting the proper center of rotation r in that
plane. If we shift the axis of rotation to point r, as shown in Fig-
ure 21 bottom, we obtain the corresponding screw motion (i.e., with
translational component reduced to t‖).

s0

t

t�

t��

r

screw axis

�0

s0

Figure 21: Conversion of a rotation about axis s0,‖s0‖ = 1, fol-
lowed by translation t (top) to the corresponding screw (bottom).

We can conclude that dual quaternions are a special representation
of the screw parameters – one with advantageous algebraical prop-
erties.

A.4 Exponential and Logarithm

Equation (26) can be used to define the exponential of any dual
quaternion p̂ with zero scalar part and non-zero non-dual part. Let

us introduce ŝ = p̂/‖p̂‖ and θ̂ = 2‖p̂‖, so that p̂ = ŝ θ̂
2 and ŝ is a unit

dual quaternion with zero scalar part. Then, the exponential can be
defined as follows

exp p̂ = exp

(
ŝ

θ̂
2

)
= cos

θ̂
2

+ ŝ sin
θ̂
2

As shown in Lemma 13, exp p̂ is a unit dual quaternion. The inverse
mapping, from unit dual quaternions to dual quaternions with zero
scalar part, is denoted as log. The following lemma establishes that
dual quaternion exponential and logarithm behave in a similar way
to their matrix counterparts.

Lemma 14. Let q̂ = cos θ̂
2 + ŝsin θ̂

2 , where q̂, ŝ ∈ Q̂1 and ŝ has zero
scalar part. Then for any m̂ ∈ Q̂1, both of the following equations
are true

exp

(
m̂ŝ

θ̂
2

m̂∗
)

= m̂exp

(
ŝ

θ̂
2

)
m̂∗ (30)

log(m̂q̂m̂∗) = m̂ log(q̂)m̂∗ (31)

Proof. Since the scalar part of ŝ is zero, the same is true for the

scalar part of m̂ŝ θ̂
2 m̂∗, as can be shown by direct computation. This

means that the exp on the left hand side of the first equation is well
defined and, according to its definition, we can write

exp

(
m̂ŝ

θ̂
2

m̂∗
)

= cos
θ̂
2

+m̂ŝ sin
θ̂
2

m̂∗ = m̂

(
cos

θ̂
2

+ ŝ sin
θ̂
2

)
m̂∗

because a dual number always commutes with a dual quaternion
and m̂m̂∗ = 1. This proves Equation (30). The proof of Equa-
tion (31) is similar

m̂q̂m̂∗ = m̂

(
cos

θ̂
2

+ ŝ sin
θ̂
2

)
m̂∗ = cos

θ̂
2

+ m̂ŝm̂∗ sin
θ̂
2

Therefore log(m̂q̂m̂∗) = m̂ŝ θ̂
2 m̂∗ = m̂ log(q̂)m̂∗.

A power of a unit dual quaternion q̂ is then defined naturally:

q̂û = exp(û log q̂) = cos

(
û

θ̂
2

)
+ ŝ sin

(
û

θ̂
2

)

Dual quaternions exhibit so-called antipodality, i.e., the fact that
both q̂ and −q̂ represent the same rigid transformation

(−q̂)v̂(−q̂)∗ = (−q̂)v̂(−q̂∗) = q̂v̂q̂∗

The mapping between SE(3) and Q̂1 is thus one to two. Note that
this is equivalent to the antipodality of regular quaternions. How-
ever, even though both q0 and −q0 represent the same rotation, the
powers qt

0 and (−q0)t are different: one corresponds to clockwise
and the other to counterclockwise rotation, see Figure 22. There-
fore, when converting matrices to dual quaternions, we must choose
an appropriate sign. This depends on each particular application;
our method to resolve antipodality in skinning is discussed in Sec-
tion 4.1.

19

q0 (-q0)

q0 (identity)= 1

q0 , 0 < t < 1t

(-q0) ,
t

0 < t < 1

0

1 1~~

Figure 22: Dual quaternions inherit the antipodality of classical
quaternions. In this example, transformation of the teapot by qt

0 for
t ∈ [0,1] produces a counterclockwise rotation (longer trajectory),
while transformation by (−q0)t leads to a clockwise one (shorter
trajectory).

B Difference between DLB and ScLERP

As stated in Section 3.4, the problem of comparing DLB and
ScLERP requires derivation of the dual angle β̂t from Equation (13)
and then comparing it with α̂t for t ∈ [0,1]. For brevity, we will use
shorthand C for cos(α0

2) and S for sin(α0
2). Using this convention,

Equations (20) and (21) take the following form

cos

(
α̂
2

)
= C− ε

αε
2

S, sin

(
α̂
2

)
= S+ ε

αε
2

C

Now, we can expand the term in the denominator of Equation (13)

1− t + tq̂2q̂∗
1 = 1− t + t cos

(
α̂
2

)
+ n̂t sin

(
α̂
2

)
=

= 1− t + tC− εt
αε
2

S+(n0 + εnε)t
(

S+ ε
αε
2

C
)

=

= 1− t + tC +n0tS︸ ︷︷ ︸
r0

+ε t
(
−αε

2
S+nε S+

αε
2

n0C
)

︸ ︷︷ ︸
rε

The newly introduced quaternions r0 and rε satisfy

‖r0‖ =
√

(1− t + tC)2 + t2S2

〈r0,rε 〉 =
〈

1− t + tC +n0tS,−t
αε
2

S+ tnε S+ t
αε
2

n0C
〉

= (t −1− tC)t
αε
2

S+
αε
2

t2CS = (t −1)t
αε
2

S

because n̂ = n0 + εnε is a unit dual quaternion (with zero scalar
part). Therefore, the denominator of our equation can be written as

‖1− t + tq̂2q̂∗
1‖ = ‖r0 + εrε‖ = ‖r0‖+ ε

〈r0,rε〉
‖r0‖

and its inverse

1
‖1− t + tq̂2q̂∗

1‖
=

1
‖r0‖ − ε

〈r0,rε〉
‖r0‖3

which gives

cos
β̂t

2
=

1− t + t cos(α̂
2)

‖1− t + tq̂2q̂∗
1‖

=
1− t + tC− εt αε

2 S

‖1− t + tq̂2q̂∗
1‖

=

=
1− t + tC

‖r0‖ − ε
(

tαε S
2‖r0‖ +

(1− t + tC)〈r0,rε 〉
‖r0‖3

)

We denote the function above as f (t). Now, we employ Maple
[Char et al. 1983] in order to compute β̂t by taking the arc cosine of
f (t). In the listing (see Figure 23), the norm ‖r0‖ is denoted as r0,
and the non-dual and dual parts of f (t) as f0 and fe. The non-dual
component of β̂t is called ang and the dual one pitch, emphasizing
their geometric interpretation. In the first part of the listing, we ac-
tually re-compute the result from [Kavan and Žára 2005], showing
that the upper bound of the angular difference between QLB and
SLERP is 0.143 radians, i.e., 8.15 degrees. In the second part (the
dual quaternion-specific one), we derive the difference between the
translational parts of DLB and ScLERP, which turns out to be a
linear function of αε (the input translation). Specifically, the dif-
ference between translation of DLB and ScLERP is shown to be
always strictly less than 0.151αε .

B.1 Error Analysis for n > 2

As mentioned in Section 3.4, the situation with more than two rigid
transformations is considerably more complex. In particular, it
is necessary to generalize Buss and Fillmore’s spherical averages
[2001] to the space of unit dual quaternions (which is not a hy-
persphere). Such an algorithm has been proposed in [Kavan et al.
2006] and called Dual quaternion Iterative Blending (DIB) – see
Algorithm 3.

Algorithm 3 (DIB)

Input: Unit dual quaternions q̂1, . . . , q̂n,
convex weights w = (w1, . . . ,wn), desired precision p

Output: Blended unit dual quaternion b̂

b̂ = DLB(w; q̂1, . . . , q̂n)
repeat

x̂ = ∑n
i=1 wi log(b̂∗q̂i)

b̂ = b̂exp(x̂)
until ‖x̂‖ < p
return b̂

An intuitive explanation of this algorithm is shown in Figure 24. In
the first step, the input dual quaternions are left-multiplied by b̂∗,
which maps the initial estimate b̂ onto the identity. The logarithm
mapping then transforms b̂∗q̂1, b̂∗q̂2 into the tangent space of Q̂1 at
the identity, giving x̂1 = log(b̂∗q̂1), x̂2 = log(b̂∗q̂2). The blended
value x̂ = w1x̂1 +w2x̂2 is computed and projected back by the ex-
ponential mapping. Finally, multiplication b̂exp(x̂) yields the unit
dual quaternion closer to the exact solution.

It is easy to see that DIB is bi-invariant, which follows from the bi-
invariance of DLB (Lemma 2) and the properties of dual quaternion
exponential and logarithm (Lemma 14). Note that DIB is indeed a
generalization of ScLERP. In fact, it can be shown that for n = 2,
DIB terminates in just a single iteration [Kavan et al. 2006]. For
n > 2, more iterations are generally required, but in practice, the al-
gorithm converges quite quickly. However, a mathematical analysis
of DIB (along the lines of [Buss and Fillmore 2001]) is a non-trivial
task that has not been addressed in the literature so far.

It is unfortunately not possible to repeat the error analysis from the
previous section for DIB, because we do not have any closed-form
expression of DIB. It might still be possible to establish a (poten-
tially non-tight) upper bound. However, that would require a deeper
analysis of the geometry of Q̂1 (the case of n = 2 corresponds only
to a simple subspace of Q̂1, i.e., a screw motion). Note that even an
empirical comparison of DLB and DIB (i.e., by sampling all pos-
sible rigid transformations) is very challenging for n > 2, because
of the phenomenon known as the curse of dimensionality (i.e., the

20

> r0 := sqrt((1-t+t*cos(alpha_0/2))^2 +
t*t*sin(alpha_0/2)^2):

> f0 := (t*cos(alpha_0/2) + 1-t)/r0:

> fe := - t*alpha_e/2*sin(alpha_0/2)/r0 -
(1-t + t*cos(alpha_0/2))*(t-1)*t*alpha_e/2*
sin(alpha_0/2)/r0^3:

> ang := 2*arccos(f0):

> plot(subs(alpha_0 = Pi, t -> ang(t)), t =
0..1, y = -0.1..3.14);

0

0.5

1

1.5

2

2.5

3

y

0.2 0.4 0.6 0.8 1
t

> anglediff := ang - alpha_0*t:

> evalf(minimize(subs(alpha_0 = Pi, t ->
anglediff(t)), t = 0..1));

−.1422292715
> evalf(maximize(subs(alpha_0 = Pi, t ->
anglediff(t)), t = 0..1));

.1422292755
> pitch := simplify(-2*fe/sin(ang/2));

pitch := t2 alpha esin(
1
2

alpha 0)(−%1− t + t %1)
/

((−1

+2t −2t %1−2t2 +2t2 %1)
√

1−2t +2t %1+2t2 −2t2 %1√
t2 (−1+%12)

−1+2t −2t %1−2t2 +2t2 %1
)

%1 := cos(
1
2

alpha 0)

> plot(subs(alpha_0 = Pi, alpha_e=1, t ->
pitch(t)), t = 0..1, y = -1..1);

0

0.2

0.4

0.6

0.8

1

y

0.2 0.4 0.6 0.8 1
t

> pitchdiff := pitch - alpha_e*t:

> evalf(minimize(subs(alpha_0 = Pi, alpha_e=1,
t -> pitchdiff(t)), t = 0..1));

−.1501415529
> evalf(maximize(subs(alpha_0 = Pi, alpha_e=1,
t -> pitchdiff(t)), t = 0..1));

.1501415529

Figure 23: Upper bound of the difference between ScLERP and
DLB for n = 2, computed using Maple.

q1

q2

b

b*q1

b*q2

1=b*b

log

x1
x2

Q1

exp()x

1x1
x2x

expq1

q2

b xexp()

improved estimate

initial estimate

1

2

3

^
^ ^

^

^ ^ ^ ^

^ ^

^^

^ ^ ^

^

^
^ ^

^

Figure 24: Illustration of one iteration of the DIB algorithm.

fact that the number of required samples grows exponentially with
dimension).

In order to determine the error practically, we therefore compare
only the results of applying DLB and DIB in skinning. In particular,
we compute the maximum difference of vertex positions obtained
by DLB and DIB. As expected, we found that the deviation between
DLB and DIB is maximal in situations with large joint rotations,
such as in Figure 25. However, even in that case, the differences
between DLB (Figure 25a) and DIB (Figure 25b) are not noticeable.
Therefore, we have visualized the error by color in Figure 25(c,
d). Note that in none of our test animations did the error exceed
0.29 units (considering the proportions of our character, the units
correspond approximately to inches).

a) b)

c) d)

Figure 25: Comparison of DLB and DIB applied in skinning. The
difference between DLB (a) and DIB (b) is imperceptible even for
large joint rotations and therefore we visualize it using color in (c)
and (d).

21

On the other hand, the difference between computation times of
DLB and DIB is quite pronounced. Our CPU implementation takes
5.07ms with DLB and 15.33ms with DIB (with accuracy p = 10−5).
Therefore, we conclude that the DIB algorithm, albeit theoretically
perfect, is not very practical in skinning – the significantly increased
cost does not yield significant improvement in deformation quality.

References

ALEXA, M. 2002. Linear combination of transformations. In
SIGGRAPH ’02: Proceedings of the 29th annual conference
on Computer graphics and interactive techniques, ACM Press,
380–387.

ALLEN, B., CURLESS, B., AND POPOVIĆ, Z. 2002. Articulated
body deformation from range scan data. In SIGGRAPH ’02:
Proceedings of the 29th annual conference on Computer graph-
ics and interactive techniques, ACM Press, New York, NY, USA,
612–619.

ALLEN, B., CURLESS, B., POPOVIĆ, Z., AND HERTZMANN,
A. 2006. Learning a correlated model of identity and pose-
dependent body shape variation for real-time synthesis. In Pro-
ceedings of the 2006 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation, Eurographics Association, Aire-
la-Ville, Switzerland, 147–156.

ANGUELOV, D., SRINIVASAN, P., KOLLER, D., THRUN, S.,
RODGERS, J., AND DAVIS, J. 2005. SCAPE: shape completion
and animation of people. ACM Trans. Graph. 24, 3, 408–416.

AUBEL, A., AND THALMANN, D. 2000. Realistic deformation of
human body shapes. Proc. Computer Animation and Simulation
2000, 125–135.

BARAN, I., AND POPOVIĆ, J. 2007. Automatic rigging and ani-
mation of 3D characters. ACM Trans. Graph. 26, 3, 72.

BARR, A. H., CURRIN, B., GABRIEL, S., AND HUGHES, J. F.
1992. Smooth interpolation of orientations with angular velocity
constraints using quaternions. ACM Trans. Graph., 313–320.

BELTA, C., AND KUMAR, V. 2002. An SVD-based projec-
tion method for interpolation on SE(3). IEEE Transactions on
Robotics and Automation 18, 3, 334–345.

BLOOM, C., BLOW, J., AND MURATORI, C., 2004. Errors
and omissions in Marc Alexa’s Linear combination of trans-
formations. http://www.cbloom.com/3d/techdocs/lcot_
errors.pdf.

BOTTEMA, O., AND ROTH, B. 1979. Theoretical kinematics.
North-Holland Publishing Company, Amsterdam, New York,
Oxford.

BUSS, S. R., AND FILLMORE, J. P. 2001. Spherical averages and
applications to spherical splines and interpolation. ACM Trans.
Graph. 20, 2, 95–126.

CAPELL, S., GREEN, S., CURLESS, B., DUCHAMP, T., AND
POPOVIC, Z. 2002. Interactive skeleton-driven dynamic defor-
mations. In SIGGRAPH ’02: Proceedings of the 29th annual
conference on Computer graphics and interactive techniques,
ACM Press, New York, NY, USA, 586–593.

CHAR, B., GEDDES, K., AND GONNET, G. 1983. The Maple
symbolic computation system. j-SIGSAM 17, 3–4 (Aug./Nov.),
31–42.

CLIFFORD, W. 1882. Mathematical Papers. London, Macmillan.

CORDIER, F., AND MAGNENAT-THALMANN, N. 2005. A data-
driven approach for real-time clothes simulation. Computer
Graphics Forum 24, 2, 173–183.

DAM, E., KOCH, M., AND LILLHOLM, M., 1998. Quaternions,
interpolation and animation. Technical Report DIKU-TR-98/5,
University of Copenhagen.

DANIILIDIS, K. 1999. Hand-eye calibration using dual quater-
nions. International Journal of Robotics Research 18, 286–298.

FONTIJNE, D., AND DORST, L. 2003. Modeling 3D euclidean
geometry. IEEE Comput. Graph. Appl. 23, 2, 68–78.

FORSTMANN, S., AND OHYA, J. 2006. Fast skeletal animation by
skinned arc-spline based deformation. In EG 2006 Short Papers,
1–4.

FORSTMANN, S., OHYA, J., KROHN-GRIMBERGHE, A., AND
MCDOUGALL, R. 2007. Deformation styles for spline-based
skeletal animation. In SCA ’07: Proceedings of the 2007 ACM
SIGGRAPH/Eurographics symposium on Computer animation,
Eurographics Association, Aire-la-Ville, Switzerland, 141–150.

GOVINDU, V. M. 2004. Lie-algebraic averaging for globally con-
sistent motion estimation. In CVPR (1), 684–691.

GUO, Z., AND WONG, K. C. 2005. Skinning with deformable
chunks. Computer Graphics Forum 24, 3, 373–381.

HANSON, A. J. 2006. Visualizing Quaternions. Morgan Kaufmann
Publishers Inc.

HEJL, J., 2004. Hardware skinning with quaternions. Game Pro-
gramming Gems 4, Charles River Media, 487–495.

HOFER, M., AND POTTMANN, H. 2004. Energy-minimizing
splines in manifolds. ACM Trans. Graph. 23, 3, 284–293.

HYUN, D.-E., YOON, S.-H., CHANG, J.-W., SEONG, J.-K.,
KIM, M.-S., AND JÜTTLER, B. 2005. Sweep-based human
deformation. The Visual Computer 21, 8-10, 542–550.

JACKA, D., REID, A., MERRY, B., AND GAIN, J. 2007. A com-
parison of linear skinning techniques for character animation. In
AFRIGRAPH ’07: Proceedings of the 5th international confer-
ence on Computer graphics, virtual reality, visualisation and in-
teraction in Africa, ACM, New York, NY, USA, 177–186.

JAMES, D. L., AND TWIGG, C. D. 2005. Skinning mesh anima-
tions. ACM Trans. Graph. 24, 3, 399–407.

JOHNSON, M. P. 2003. Exploiting Quaternions to Support Expres-
sive Interactive Character Motion. PhD thesis, MIT.

JOSHI, P., MEYER, M., DEROSE, T., GREEN, B., AND
SANOCKI, T. 2007. Harmonic coordinates for character ar-
ticulation. In SIGGRAPH ’07: ACM SIGGRAPH 2007 papers,
ACM, New York, NY, USA, 71.

JU, T., SCHAEFER, S., AND WARREN, J. 2005. Mean value coor-
dinates for closed triangular meshes. In SIGGRAPH ’05: ACM
SIGGRAPH 2005 Papers, ACM, New York, NY, USA, 561–566.

JUTTLER, B. 1994. Visualization of moving objects using dual
quaternion curves. Computers & Graphics 18, 3, 315–326.

KAVAN, L., AND ŽÁRA, J. 2005. Spherical blend skinning: A
real-time deformation of articulated models. In 2005 ACM SIG-
GRAPH Symposium on Interactive 3D Graphics and Games,
ACM Press, 9–16.

22

KAVAN, L., COLLINS, S., O’SULLIVAN, C., AND ŽÁRA, J.,
2006. Dual quaternions for rigid transformation blending. Tech-
nical report TCD-CS-2006-46, Trinity College Dublin.

KAVAN, L., COLLINS, S., ŽÁRA, J., AND O’SULLIVAN, C. 2007.
Skinning with dual quaternions. In 2007 ACM SIGGRAPH Sym-
posium on Interactive 3D Graphics and Games, ACM Press, 39–
46.

KRY, P. G., JAMES, D. L., AND PAI, D. K. 2002. Eigenskin:
real time large deformation character skinning in hardware. In
Proceedings of the 2002 ACM SIGGRAPH/Eurographics sym-
posium on Computer animation, ACM Press, 153–159.

KURIHARA, T., AND MIYATA, N. 2004. Modeling deformable hu-
man hands from medical images. In SCA ’04: Proceedings of the
2004 ACM SIGGRAPH/Eurographics symposium on Computer
animation, ACM Press, New York, NY, USA, 355–363.

KURIHARA, T., AND NISHITA, T. 2007. Dual-quaternion skinning
with non-rigid transformatio. In SCA ’07: Posters, Eurographics
Association, Aire-la-Ville, Switzerland, 18–19.

LEWIS, J. P., CORDNER, M., AND FONG, N. 2000. Pose
space deformation: a unified approach to shape interpolation
and skeleton-driven deformation. In Proceedings of the 27th
annual conference on Computer graphics and interactive tech-
niques, ACM Press/Addison-Wesley Publishing Co., 165–172.

LI, J., AND HAO, P. 2006. Smooth interpolation on homogeneous
matrix groups for computer animation. Journal of Zhejiang Uni-
versity 7, 7, 1168–1177.

LUCIANO, C., AND BANERJEE, P. 2000. Avatar kinematics mod-
eling for telecollaborative virtual environments. In WSC ’00:
Proceedings of the 32nd conference on Winter simulation, So-
ciety for Computer Simulation International, San Diego, CA,
USA, 1533–1538.

MAGNENAT-THALMANN, N., LAPERRIÈRE, R., AND THAL-
MANN, D. 1988. Joint-dependent local deformations for hand
animation and object grasping. In Proceedings on Graphics in-
terface ’88, Canadian Information Processing Society, 26–33.

MARTHINSEN, A. 1999. Interpolation in Lie groups. SIAM J.
Numer. Anal. 37, 1, 269–285.

MCCARTHY, J. M. 1990. Introduction to theoretical kinematics.
MIT Press, Cambridge, MA, USA.

MERRY, B., MARAIS, P., AND GAIN, J. 2006. Animation space:
A truly linear framework for character animation. ACM Trans.
Graph. 25, 4, 1400–1423.

MERRY, B., 2007. Personal communication.

MOAKHER, M. 2002. Means and averaging in the group of rota-
tions. SIAM Journal on Matrix Analysis and Applications 24, 1,
1–16.

MOHR, A., AND GLEICHER, M. 2003. Building efficient, accurate
character skins from examples. ACM Trans. Graph. 22, 3, 562–
568.

MURRAY, R. M., SASTRY, S. S., AND ZEXIANG, L. 1994. A
Mathematical Introduction to Robotic Manipulation. CRC Press,
Inc., Boca Raton, FL, USA, 413–414.

PARK, S. I., AND HODGINS, J. K. 2006. Capturing and animating
skin deformation in human motion. ACM Trans. Graph. 25, 3,
881–889.

PARK, S. I., SHIN, H. J., AND SHIN, S. Y. 2002. On-line locomo-
tion generation based on motion blending. In Proceedings of the
2002 ACM SIGGRAPH/Eurographics symposium on Computer
animation, ACM Press, 105–111.

PEREZ, A., AND MCCARTHY, J. M. 2004. Dual quaternion syn-
thesis of constrained robotic systems. Journal of Mechanical
Design 126, 425–435.

PRATSCHER, M., COLEMAN, P., LASZLO, J., AND SINGH, K.
2005. Outside-in anatomy based character rigging. In SCA ’05:
Proceedings of the 2005 ACM SIGGRAPH/Eurographics sympo-
sium on Computer animation, ACM Press, New York, NY, USA,
329–338.

RHEE, T., LEWIS, J., AND NEUMANN, U. 2006. Real-
time weighted pose-space deformation on the GPU. Computer
Graphics Forum 25, 3, 439–448.

SCHEEPERS, F., PARENT, R. E., CARLSON, W. E., AND MAY,
S. F. 1997. Anatomy-based modeling of the human muscula-
ture. In SIGGRAPH ’97: Proceedings of the 24th annual con-
ference on Computer graphics and interactive techniques, ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA,
163–172.

SHOEMAKE, K., AND DUFF, T. 1992. Matrix animation and polar
decomposition. In GI ’92, Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 258–264.

SHOEMAKE, K. 1985. Animating rotation with quaternion curves.
In Proceedings of the 12th annual conference on Computer
graphics and interactive techniques, ACM Press, 245–254.

SHREINER, D., WOO, M., NEIDER, J., AND DAVIS, T. 2007.
OpenGL Programming Guide: The Official Guide to Learning
OpenGL, Version 2.1. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA.

SLOAN, P.-P. J., ROSE, III, C. F., AND COHEN, M. F. 2001.
Shape by example. In Proceedings of the 2001 symposium on
Interactive 3D graphics, ACM Press, 135–143.

TERAN, J., SIFAKIS, E., BLEMKER, S. S., NG-THOW-HING, V.,
LAU, C., AND FEDKIW, R. 2005. Creating and simulating
skeletal muscle from the visible human data set. IEEE Transac-
tions on Visualization and Computer Graphics 11, 3, 317–328.

WANG, X. C., AND PHILLIPS, C. 2002. Multi-weight enveloping:
least-squares approximation techniques for skin animation. In
Proceedings of the 2002 ACM SIGGRAPH/Eurographics sym-
posium on Computer animation, ACM Press, 129–138.

WANG, R. Y., PULLI, K., AND POPOVIĆ, J. 2007. Real-time
enveloping with rotational regression. ACM Trans. Graph. 26, 3,
73.

WANG, W., JÜTTLER, B., ZHENG, D., AND LIU, Y. 2008. Com-
putation of rotation minimizing frames. ACM Trans. Graph. 27,
1, 1–18.

WAREHAM, R., CAMERON, J., AND LASENBY, J. 2005. Appli-
cations of conformal geometric algebra in computer vision and
graphics. Lecture Notes in Computer Science 3519, 329–349.

WEBER, O., SORKINE, O., LIPMAN, Y., AND GOTSMAN, C.
2007. Context-aware skeletal shape deformation. Computer
Graphics Forum (Proceedings of Eurographics) 26, 3.

YANG, X., SOMASEKHARAN, A., AND ZHANG, J. J. 2006. Curve
skeleton skinning for human and creature characters: Research
articles. Comput. Animat. Virtual Worlds 17, 3-4, 281–292.

23

