
To appear in ACM Transactions on Graphics (SIGGRAPH Asia 2008 Proceedings)

Phong Tessellation
Tamy Boubekeur Marc Alexa

TU Berlin

Figure 1: Phong Tessellation completes Phong Shading.

Abstract
Modern 3D engines used in real-time applications provide shading
that hides the lack of higher order continuity inside the shapes using
modulated normals, textures, and tone-mapping – artifacts remain
only on interior contours and silhouettes if the surface geometry is
not smooth. The basic idea in this paper is to apply a purely local
refinement strategy that inflates the geometry enough to avoid these
artifacts. Our technique is a geometric version of Phong normal
interpolation, not applied on normals but on the vertex positions.
We call this strategy Phong Tessellation.

CR Categories: I.3.3 [Computer Graphics]: Line and Curve
Generation; I.3.3 [Picture/Image Generation]: Display Algorithms;
I.3.1 [Hardware Architecture]: Graphics Processors;
Keywords: real-time tessellation, mesh refinement, visual conti-
nuity

1 Introduction

Interactive rendering progressively adopts effects inspired by tech-
niques used in off-line rendering: HDR tone mapping, soft shad-
ows, ambient occlusion, color bleeding, motion blur etc. now fre-

quently appear in the interactive 3D engines. Since high quality
smooth surfaces, such as NURBS and subdivision surfaces, are
nowadays the standard geometric representation in off-line render-
ing, it appears natural to establish them also in real-time applica-
tions. However, the requirements of video games and other inter-
active applications are usually entirely visual, and a large part of
the “visual smoothness” is already generated using Phong Shading
and normal mapping. Thus, the remaining problem to solve is im-
proving the geometry where visual smoothness cannot be generated
based on shading: on contours and silhouettes.

Looking at Figures 1 and 2 for instance, using a high quality smooth
surface representation for the faces would not make a significant
difference in the interior part of the shaded images, as textures,
Phong normal interpolation and lighting already provide a realis-
tic visual complexity. However, the silhouettes suffer from the un-
derlying polygonal representation. There are two competing goals
when trying to improve the visual artifacts along contours:

• producing geometry along contours that is smooth so that the
visual artifacts are avoided, while

• creating this geometry with as few operations as possible, as
the area around the contour only accounts for a small part
of the image and, thus, the overall visual impression, whose
generation requires most of the CPU and GPU cycles.

We designed Phong Tessellation in this spirit, being barely more
expensive than Phong Shading alone: it is based on using barycen-
tric interpolation and orthogonal projections, and requires only the
information a triangle naturally carries on the GPU, i.e. its vertex
positions and vertex normals. We show that it is almost as efficient
as the standard linear (flat) tessellation of triangles, while providing
significantly improved contours in most cases. As shown in Fig. 1
it naturally complements Phong Shading.

1

To appear in ACM Transactions on Graphics (SIGGRAPH Asia 2008 Proceedings)

Figure 2: As shown in these captures from the game Doom 3 (id
Software), normal mapping and Phong shading provide reasonable
shading of the interior of objects, but the piecewise linear shape is
clearly visible along contours.

2 Previous work
Real-time tessellation has recently received a lot of interest in com-
puter graphics. The reason is that applications usually maintain
coarse approximations of 3D models for animation, interaction,
physical simulation, while the GPU would be capable of rasteriz-
ing large amounts of primitives. Because the bus between CPU and
GPU is still a limitation, it makes sense to send the coarse model
to the GPU, where additional vertices and polygons are generated
prior to projection and scan conversion.

Several techniques were developed to generate smooth surfaces
on the GPU (NURBS [Guthe et al. 2005] or subdivision sur-
faces [Shiue et al. 2005]), however, they are considered too slow
for the integration into real-time engines. Quite generally, gener-
ating smooth surfaces that depend on maintaining the topological
structure of a mesh on the GPU require several rendering passes
and are memory and computation intensive, which is incompatible
with the requirements of realtime 3D engines.

One successful solution is derived from the seminal ideas of
Gouraud [Gouraud 1971] and Phong [Phong 1975]: the visual
smoothness, namely, realizing that in most situations exact geo-
metric smoothness is not critical as long as the surface appears to
be smooth as a result of the shading technique. Interpolating per-
vertex normal vectors for shading computations achieves this visual
smoothness, still avoiding knowledge of topological neighborhoods
and processing polygons independently. Valchos et al. [Vlachos
et al. 2001] built upon this principle: curved PN triangles are a
purely local scheme, constructing a cubic Bézier patch according
to the three positions and the three normals of the triangle. Follow-
ing Van Overveld and Wyvill [van Overveld and Wyvill 1997], a
quadratic patch is constructed to evaluate continuous normal fields
meeting with C0 continuity along edges and yielding a continuous
shading. Boubekeur and Schlick [Boubekeur and Schlick 2007] use
subdivision scheme [Loop 1987; Zorin et al. 1996] that steers a lo-
cal quadratic approximation, leading to visually smoother surfaces
than PN triangles, while keeping a high framerate. Most recently,
Loop and Schaefer [Loop and Schaefer 2008] use low degree quad
patches, again with separate normal fields, to approximate Catmull-
Clark surfaces. The idea of a “visually smooth” geometric up-
sampling may be applied everywhere on the input mesh, or only
on specific locations such as silhouettes. For instance, Dyken et
al. [Dyken et al. 2008] use PN Triangles on silhouettes only.

All these techniques, as well as screen space methods [Max 1989],
use the same basic principle: each input polygon is replaced by a
polynomial patch. Our suggested operator for Phong tessellation
avoids the explicit patching and is therefore simpler and more effi-
cient while still being visually convincing in most cases.

3 Phong Tessellation

Consider a triangle t indexing three vertices {vi,v j,vk}, with v =
{p,n}, p ∈ IR3 the position and n ∈ IR3 the normal vector. Gen-
erally, the tessellation of t generates a set of new vertices lying
on a surface defined over t. Linear tessellation simply generates
vertices on the plane defined by t. Each generated vertex p(u,v)
in the linear tessellation corresponds to a barycentric coordinate
(u,v,w),u,v ∈ [0,1],w = 1−u− v defined by

p(u,v) = (u,v,w)(pi,p j,pk)T (1)

Phong normal interpolation is using the same process, only normal-
izing the result in the end:

n′(u,v) = (u,v,w)(ni,n j,nk)T, n(u,v) = n′/‖n′‖ (2)

Clearly, Phong normals are successful because they are as simple as
possible. They have numerous well known defects (e.g. they can-
not provide inflection points), but still they are the preferred choice
because the few cases in which they produce visible artifacts are
far outweighed by their computational simplicity in comparison to
higher order variants. We believe that a real-time mesh refinement
operator should be as efficient and as simple as Phong normal in-
terpolation to be similarly attractive in interactive applications. The
procedure we motivate and describe in the following appears to be
the simplest that still provides curved geometry.

Note that around each vertex the tangent plane defined by the ver-
tex normal is the appropriate local geometry. So, conceptually we
project the triangle t onto the tangent plane of vertex vi and perform
barycentric interpolation within the tangent plane to define the ge-
ometry in the vicinity of vi. The geometry relative to v j and vk is
similarly defined. The geometry defined over the whole triangle t is
then generated by barycentric interpolation of the three barycentric
interpolations within the projected triangles. Since projection com-
mutes with barycentric interpolation, the computation of points can
be simplified to the following procedure:

1. compute the linear tessellation, then

2. project the resulting point orthogonally onto the three tangent
planes defined by the triangle vertices, and finally

3. compute the barycentric interpolation of these three projec-
tions.

Figure 3: Phong Tessellation principle. Instead of interpolating
normals as in Phong Shading, we interpolate projection onto ver-
tices tangent plane to define a curve geometry for each triangle.

2

To appear in ACM Transactions on Graphics (SIGGRAPH Asia 2008 Proceedings)

Figure 4: Coarse mesh, followed by various Phong Tessellations
with α equal to 0, 1/4, 1/2, 3/4 and 1.

Let
πi(q) = q−

(
(q−pi)Tni

)
ni

be the orthogonal projection of q onto the plane defined by pi and
ni, then Phong Tessellation is defined as:

p∗(u,v) = (u,v,w)

πi(p(u,v))
π j(p(u,v))
πk(p(u,v))

 (3)

Comparing linear tessellation (Eq. 1), this operator adds three or-
thogonal projections and an additional barycentric interpolation.

A shape factor α can be used to interpolate between linear (flat) and
Phong Tessellation, controlling the amount of curvature produced
over a triangle. In fact, we use the following definition of inserted
vertices at (u,v) for Phong tessellation:

p∗α (u,v) = (1−α)p(u,v)+α(u,v,w)

πi(p(u,v))
π j(p(u,v))
πk(p(u,v))

 (4)

Fig. 4 shows the influence of this shape parameter on the final ge-
ometry. In our experiments, we fix α = 3/4 globally as this value
provides convincing results in most of the situations. Nevertheless,
α can also be set on a per-vertex basis and interpolated over trian-
gles.

4 Properties

The important computational properties of Phong Tessellation are
that (1) only the information associated to a triangle on the GPU is
used and (2) the evaluation has no side effects: note that all other
techniques for evaluating patches on the GPU we are aware of [Vla-
chos et al. 2001; Boubekeur and Schlick 2007; Loop and Schaefer
2008] require either two rendering passes (one for setting up the
patch by writing the necessary patch information into the memory
of the GPU and another one for evaluating this information) or a full
patch construction for each refined vertex. Our construction can be
evaluated in a single pass, because vertex positions and normals are
part of the information for triangles.

The geometry generated by our definition is a quadratic patch, as
can be seen immediately by writing out the definition:

p∗(u,v) =u2pi + v2p j +w2pk +uv
(
πi(p j)+π j(pi)

)
+

vw
(
π j(pk)+πk(p j)

)
+wu(πk(pi)+πi(pk))

The quadratic patch directly shows that the surface will be curved,
as desired, as long as the vertex normals are different from each
other (see Fig. 5). For identical normals the surface is identical
to the flat triangle, similar to Phong normals, which are constant
for constant input. Note that a quadratic patch cannot provide an
inflection point. We feel a higher order patch is not warranted in
practical applications, again similar to higher order normal interpo-
lation widely considered unnecessary in practice.

Figure 5: Convex, saddle and concave normals configuration.

While the patches are curved, the collection of quadratic patches
forms a C0 continuous surface: along each edge, barycentric in-
terpolation leads to using only the positions and normals from the
vertices incident on the edge, and that information is identical for
two neighboring triangles. Across edges or vertices the tangents
are not continuous. However, combining Phong Tessellation with
Phong normal interpolation for shading results in visual smoothness
where Phong normals provide smoothly varying shading across
mesh edges and Phong vertices form curved silhouettes and con-
tours (see Fig. 6).

Phong Tessellation interpolates the input mesh vertices and does not
exhibit the shrinking effects of approximating refinement schemes
(e.g. subdivision). This allows reusing all existing meshes present
in real-time applications, without redesigning them so that their
limit surface reaches the desired shape. The visual results com-
pared to other techniques that interpolate the mesh vertices such
as PN triangles or modified Butterfly subdivision are equally con-
vincing (see Fig. 9), while being significantly more efficient. Of
course, Phong tessellation, such as curved PN triangles, might gen-
erate contours with visible tangent discontinuities, while subdivi-
sion surface will always provide at least C1 contour curves.

The quality of the curved geometry defined by Phong tessellation
depends on the normals supplied with vertices. In our tests, we use
a classical angle-weighted combination of incident faces normals.
We observe similarly good but slightly different results using other
weights. Note also that singularities such as sharp edges could be
controlled using scalar tags [Boubekeur and Schlick 2005b].

5 Performance
The generation of a single vertex in the tessellation represents only
few lines of shader code. Note that the computation is based on
barycentric interpolation and three orthogonal projections while a
straightforward evaluation of the quadratic form would either need
more operations or two rendering passes. We have observed our
variant to be 40% faster on average.

Since tessellator units are still in development (announced for DX
11), we emulate them using either the geometry shader unit (at
low tessellation rates) or a generic GPU refinement kernel in the
spirit of Boubekeur and Schlick [Boubekeur and Schlick 2005a]. In

Figure 6: Phong rendering. From left to right: the mesh, the stan-
dard Phong Shading, Phong Tessellation with analytic normals and
the Phong Tessellation with Phong normals.

3

To appear in ACM Transactions on Graphics (SIGGRAPH Asia 2008 Proceedings)

(a) Input (b) Uniform (c) Adaptive View-Dependent

Figure 7: Adaptive view-dependent Phong Tessellation for real-
time geometric upsampling on silhouettes and contours only.

each case, we perform adaptive mesh refinement [Boubekeur and
Schlick 2008] by supplying an additional depth value with each
vertex corresponding to the desired tessellation ratio in its vicinity.

As shown on Fig. 7, the main influence of Phong tessellation ap-
pears on contours and silhouettes, so we perform an adaptive re-
finement in these locations, considering the angle between the ver-
tex normal and the view vector and relying on Phong Shading to
produce the necessary visual smoothness inside the shape.

In our experiments, we use a simple measure to compute a refine-
ment depth smoothly growing around contours:

di =
(

1−
∥∥∥∥nT

i
c−pi

||c−pi||

∥∥∥∥)m

with c the position of the camera and m the maximum refinement
depth. This captures silhouettes and interior contours, and address-
ing them with geometry synthesis makes our solution far easier
and more efficient than clipping techniques [Sander et al. 2000].
To avoid strong popping artifacts, a progressive transition between
coarse and refined polygons can be optionally performed by map-
ping the refinement depth di onto α .

Fig. 8 shows the framerate of Phong Tessellation compared to lin-
ear tessellation (producing flat geometry on triangles). We have
measured the framerate on a GeForce 8800 GTX, 768 Mb, in prac-
tical rendering conditions. We observe an overhead of about 10%
when using Phong Tessellation in the geometry processing work-
load (shading disabled). However, in a realistic rendering environ-
ment – with shading enabled, full image synthesis at 1600x1200,
3 light sources and dynamic deformations of the geometry (yellow
and green bars in Fig. 8) – this cost becomes proportionally neg-
ligible. The different pictures presented in this paper illustrate the
visual improvement.

380 540 882 1246 1994 2720

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Linear

Phong

Linear + Shading

Phong + Shading

Number of input triangles

F
ra

m
es

 p
er

 s
ec

on
ds

Figure 8: Framerate comparison between linear (flat) and Phong
tessellation, with and without shading (max depth 64x64).

Figure 9: Comparison: Modified Butterfly subdivision (middle-
left), PN Triangles (middle-right) and Phong tessellation (right).

6 Conclusion
Normal mapping and all the current shading techniques already pro-
vide light reflections appearing to come form curved geometry in-
side the shapes – but still exhibit the piecewise linear geometry on
silhouettes and contours. We believe that in many realtime scenar-
ios actually generating smooth surfaces on either the CPU or ap-
proximations of them on the GPU is wasteful. Instead, the simple
procedure of Phong Tessellation, which requires only orthogonal
projections and linear interpolations based on vertex positions and
normals, can be used to generate curved contours. Combined with
Phong Shading to generate continuously varying shading, it pro-
vides enough visual smoothness for convincing renderings in most
situations – and that with minimal extra cost.

Phong tessellation can be implemented transparantly into the ren-
dering pipeline, i.e. users need not adapt their rendering engine to
use it. It automatically works with any geometry based on meshes,
including the case of dynamically updated vertex positions or nor-
mals. It can be easily used into the upcoming tesselator units.

References
BOUBEKEUR, T., AND SCHLICK, C. 2005. Generic mesh refinement on GPU. In

Proceedings of ACM SIGGRAPH/Eurographics Graphics Hardware, 99–104.

BOUBEKEUR, T., AND SCHLICK, C. 2005. Scalar tagged PN triangles. In Proceed-
ings of Eurographics 2005 (short papers), 17–20.

BOUBEKEUR, T., AND SCHLICK, C. 2007. QAS: Real-time quadratic approximation
of subdivision surfaces. In Proceedings of Pacific Graphics 2007, 453–456.

BOUBEKEUR, T., AND SCHLICK, C. 2008. A flexible kernel for adaptive mesh
refinement on GPU. Computer Graphics Forum 27, 1, 102–114.

DYKEN, C., REIMERS, M., AND SELAND, J. 2008. Real-time GPU silhouette refine-
ment using adaptively blended bezier patches. Comp. Graph. Forum 27, 1, 1–12.

GOURAUD, H. 1971. Continuous shading of curved surfaces. IEEE Transactions on
Computers 20, 6, 623–628.

GUTHE, M., BALZS, ., AND KLEIN, R. 2005. GPU-based trimming and tessellation
of nurbs and t-spline surfaces. In Proceedigns of ACM SIGGRAPH, 1016–1023.

LOOP, C., AND SCHAEFER, S. 2008. Approximating catmull-clark subdivision sur-
faces with bicubic patches. ACM Transaction on Graphics 27, 1, 1–8.

LOOP, C. 1987. Smooth subdivisions surfaces based on triangles. Master’s thesis,
University of Utah.

MAX, N. 1989. Smooth appearance for polygonal surfaces. The Visual Computer 5,
3 (Mai), 160–173.

PHONG, B. T. 1975. Illumination for computer generated pictures. Comm. ACM 18,
6 (June), 311–317.

SANDER, P., GU, X., GORTLER, S., HOPPE, H., AND SNYDER, J. 2000. Silhouette
clipping. In Proceedings of ACM SIGGRAPH, 327–334.

SHIUE, L.-J., JONES, I., AND PETERS, J. 2005. A realtime GPU subdivision kernel.
In Proceedings of ACM SIGGRAPH, 1010–1015.

VAN OVERVELD, C. W. A. M., AND WYVILL, B. 1997. Phong normal interpolation
revisited. ACM Transaction on Graphics 16, 4, 397–419.

VLACHOS, A., PETERS, J., BOYD, C., AND MITCHELL, J. 2001. Curved PN trian-
gles. Proceedings of ACM Symposium on Interactive 3D, 159–166.

ZORIN, D., SCHROEDER, P., AND SWELDENS, W. 1996. Interpolating subdivision
for meshes with arbitrary topology. In Proceedings of ACM SIGGRAPH, 189–192.

4

