

Beyond Programmable Shading Course ACM SIGGRAPH 2010

DirectCompute Use in Real-Time Rendering Products

Chas. Boyd Microsoft Windows Graphics

Overview

- Current games using DirectCompute for visuals
- Examples of game rendering techniques:
 - Screen-space ambient occlusion
 - Optical effects (lens flare, depth-of-field)
 - Lighting
- Future projections

Current Compute-Based Techniques

- Screen-Space Ambient Occlusion
 - BattleForge
 - Colin McRae Dirt 2
- Depth of Field Effect
 - Metro 2033
 - Just Cause 2
- Post Processing Optical Effects
 - FutureMark 3DMark 11

Beyond Programmable Shading Course ACM SIGGRAPH 2010

DirectCompute Use in Real-Time Rendering Products AMBIENT OCCLUSION

Screen-Space Ambient Occlusion

Conventional technique uses pixel shaders
 http://sites.google.com/site/perumaal/ao.pdf

• DirectCompute shaders enable more control of convolution filter cache

6

HDSSAO Off

7/29/2010

7

HDSSAO On

Core Algorithm

- For each pixel in depth image
- Check surrounding neighborhood to see if they form a concave region
 - Fit a cone, is it concave or convex
- Improved results if normals included in check

ATE a lead biotech and the lead to build the second of the

I/O Cost is large

- HDAO has an evenly distributed sparse sampling pattern
- The kernel size is 12 texels
- With 48 valleys the PS has to perform 193 samples

- 1(Center)+(48(Depth)+48(Normals))*2(Valley)

• This gives rise to an ALU : TEX Ratio of 0.48

DirectCompute Alternative

- GPU has groupshared 'register' storage class
 Corresponds to programmable cache
- Can store frequently read values
 Beats performance of texture cache in this algorithm
- Aka "Local Data Store", "Local memory"

Structure Depth Buffer in Tiles

nX Groups

32x32 pixel tiles

(32x16 or 16x16 also work well)

Tiles must overlap: Apron

Texel sampling area, written to LDS (56x56)

ALU compute area (32x32)

Kernel radius (12)

Advantages

- Using the groupshared memory avoids an incredible amount of over-sampling
- It can be filled using the Gather instruction, which further reduces the number of TEX operations
- This gives rise to an ALU : TEX Ratio of 17.92
- The overlapping tile size is also critical to overall performance

Results

HDAO is not unique

- General Technique
 - Caching in groupshared memory is a performance win for many algorithms
- Aprons required for any kernel-based algorithm
 Tile size with Apron is what needs to fit/align

Beyond Programmable Shading Course ACM SIGGRAPH 2010

DirectCompute Use in Real-Time Rendering Products DEPTH OF FIELD

Depth of Field Effect (ala Metro 2033)

- Justification
 - Adds realism for a 'you are there' experience
 - Provides creator with a way to direct user's attention (as heavily used in video/cinema)

Early Work

- Create a blurred (usually down-scaled) version of the frame
 - Blend between that and original (crisp) version based on distance from focal plane
- Issues:
 - Fixed blur radius across scene, no variation with depth
 - Artifacts along edges are very tricky to remove
 - Required significant logic for each kernel tap

7/29/2010

Sophisticated Solution

- Model the problem as a heat-flow simulation
 - Blur radius analogous to heat distance traveled
 - Controlled by 'thermal conductivity' of image, which is defined by distance from focal plane
- Original work at Pixar
 - <u>http://graphics.pixar.com/library/DepthOfField/paper.pdf</u>
 - Michael Kass, Aaron Lefohn, John Owens

Image Credit: Pixar Kass, Lefohn, Owens

Implementation in Metro 2033

- Alternating Direction Implicit solver
 - Decomposes problem into X and Y directions
 - Finite Difference scheme results in tri-diagonal systems in each axis (row/column)

$$\begin{bmatrix} b_1 & c_1 & & & 0 \\ a_2 & b_2 & c_2 & & \\ & a_3 & b_3 & \ddots & \\ & & \ddots & \ddots & c_{n-1} \\ 0 & & & a_n & b_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \\ \vdots \\ d_n \end{bmatrix}$$

Hybrid Tri-diagonal Systems Solver

- 3 Steps of Parallel Cyclic Reduction
 - Each step reduces complexity of each system
 - And doubles the number of systems
 - Shifts problem to more data-parallel domain
- Gauss Elimination –using DirectCompute

 Forward elimination -> Backward substitution
 Complexity O(N)

Hybrid PCR/Gauss TriDiag Solver

7/29/2010

Metro 2033

- GDC 2010 Presentation by
 OlesShishkovtsov, 4A Games
 - AshuRege, NVIDIA
- http://developer.nvidia.com/object/gdc-2010.html#metro

Advantages

- Blur size varies with distance to focal plane
 Required for cinematic level of realism
- Higher image quality / fewer visible artifacts
 - Implicit techniques distribute errors more globally
 - Errors concentrated in one area == artifact
 - Accurate behavior near depth edges
 - Compared to earlier techniques

Beyond Programmable Shading Course ACM SIGGRAPH 2010

DirectCompute Use in Real-Time Rendering Products

FFT LENS EFFECTS

3DMark is not a game

- Futuremark produces 3DMark as a benchmark
 - Intended as a 'stress test' for DirectX11 hardware and drivers
- Designed to be as close to game as possible
 but capable of simulating a very heavy workload
- Utilizes FFT implemented in compute shaders
 For post-process lens effects

Post Processing Pipeline

Conventional Post Processing Effects

Post Effects Require Multiple Passes

- Blur/Halation Effect
 - 2 passes of separable kernel (0.5-1ms)

- Lens Flare Effect
 - At least 1 pass (0.3ms or 3fps) per flare 'point'

Conventional Post Processing Effects

7/29/2010

Beyond Programmable Shading, SIGGRAPH 2010

35

Kernel Size

- Entertainment apps must be resolutionindependent
- Post effects must scale with screen resolution
 - Not a fixed n-tap kernel
 - Kernel size is proportional to image size
 - Number of $Ops = M^*N^*k = M^*N^*b^*N = O(N^3)$
- May require more passes for larger screen sizes

FFT Approach

- Compute interesting kernel shapes for glare/flare
 Procedural algorithm to control nr of streaks
- Ideally HDR level of precision
 - Could paint in photoshop?
- Convert kernel into Frequency domain (re+im)
 - Requires 2 passes

FFT Post Processing Effects

Lens Reflection Kernel

Beyond Programmable Shading Course, ACM SIGGRAPH 2010

7/29/2010

Beyond Programmable Shading Course, ACM SIGGRAPH 2010

Complex Multiply

- Usual Process:
 - Result.re = A.re*B.re A.im*B.im
 - Result.im = A.im*B.re + A.re*B.im
- This can be a single pass
 - Replaces n-passes of conventional technique

Inverse FFT

- Inverse FFT the result
 - Produces image of streaks
 - Requires 2 passes

Add to original image

3dmark11 - work in progress

Pixel Shader Convolution Performance

- Op count grows as O(N³)
- So does I/O bandwidth
 - Into texture unit at least,
 - Maybe not from memory

FFT Performance

- 1-D FFT Operations count
 - $N*Log_2(N)$
- 2-D FFT Operations count
 - $-5 * (M*N*log_2(N) + N*M*log_2(M)) \sim O(N^2)Log_2(N)$
- 2-D FFT I/O count
 - -2 reads and writes per pixel $\sim O(M^*N)$

Performance (ops)

Beyond Programmable Shading, SIGGRAPH 2010

Conclusion

- FFT enables more post effects in fewer passes
 - May also enable new types of effects
 - Performance improves with effect complexity
- Challenges
 - 2 passes required for FFT in each direction
 - Pixel Shaders are faster for less complex effects

FFT Future Work

- Compute APIs currently target 32-bit float data
 - Reduced precision may be adequate for image uses
 Consider float16 precision for intermediate surfaces
- Most current implementations assume scalars
 Multiple color channels could be better optimized
- What other effects can benefit from freq domain?
 SSAO? Depth-of-Field? Motion Blur?

Summary & Forecast

- Adoption of DirectCompute technologies is increasing steadily:
 - as new techniques are identified
 - new solutions to existing problems found
 - cross-ecosystem collaboration in operation
- Developers continuously encounter situations that require increased generality to implement

Acknowledgements

- Team Dirt 2, Codemasters
- Jonathan Story, AMD

- Oles Shishkovtsov, 4A Games
- Jim Black, Ashu Regde, nVidia

• Juha Sjoholm, Ilkka Koho, FutureMark