
Approximating Dynamic Global Illumination in Image Space

Tobias Ritschel Thorsten Grosch Hans-Peter Seidel
MPI Informatik

Figure 1: We generalize screen-space ambient occlusion (SSAO) to directional occlusion (SSDO) and one additional diffuse indirect bounce of
light. This scene contains 537k polygons and runs at 20.4 fps at 1600×1200 pixels. Both geometry and lighting can be fully dynamic.

Abstract

Physically plausible illumination at real-time framerates is often
achieved using approximations. One popular example is ambient
occlusion (AO), for which very simple and efficient implementations
are used extensively in production. Recent methods approximate
AO between nearby geometry in screen space (SSAO). The key
observation described in this paper is, that screen-space occlusion
methods can be used to compute many more types of effects than just
occlusion, such as directional shadows and indirect color bleeding.
The proposed generalization has only a small overhead compared to
classic SSAO, approximates direct and one-bounce light transport
in screen space, can be combined with other methods that simulate
transport for macro structures and is visually equivalent to SSAO in
the worst case without introducing new artifacts. Since our method
works in screen space, it does not depend on the geometric complex-
ity. Plausible directional occlusion and indirect lighting effects can
be displayed for large and fully dynamic scenes at real-time frame
rates.

CR Categories: I.3.7 [COMPUTER GRAPHICS]: Three-
Dimensional Graphics and Realism; I.3.3 [COMPUTER GRAPH-
ICS]: Color, Shading, Shadowing and Texture

Keywords: radiosity, global illumination, constant time

1 Introduction

Real-time global illumination is still an unsolved problem for large
and dynamic scenes. Currently, sufficient frame rates are only
achieved through approximations. One such approximation is ambi-
ent occlusion (AO), which is often used in feature films and computer

games, because of its high speed and simple implementation. How-
ever, AO decouples visibility and illumination, allowing only for
a coarse approximation of the actual illumination. AO typically
displays darkening of cavities, but all directional information of
the incoming light is ignored. We extend recent developments in
screen-space AO towards a more realistic illumination we call screen-
space directional occlusion (SSDO). The present work explains, how
SSDO

• accounts for the direction of the incoming light,

• includes one bounce of indirect illumination,

• complements standard, object-based global illumination and

• requires only minor additional computation time.

This paper is structured as follows: First, we review existing work in
Section 2. In Section 3 we describe our generalizations of ambient
occlusion for the illumination of meso-structures. Section 4 explains
extensions to improve the visual quality. In Section 5 the integration
of our method into a complete global illumination simulation is de-
scribed. We present our results in Section 6, we discuss in Section 7
before concluding in Section 8.

2 Previous Work

Approximating physically plausible illumination at real-time frame-
rates has recently received much attention. Ambient occlusion (AO)
[Cook and Torrance 1981][Zhukov et al. 1998] is used in production
extensively [Landis 2002] because of its speed, simplicity and ease
of implementation. While physically correct illumination computes
the integral over a product of visibility and illumination for every
direction, AO computes a product of two individual integrals: one
for visibility and one for illumination. For static scenes, AO allows
to pre-compute visibility and store it as a scalar field over the sur-
face (using vertices or textures). Combining static AO and dynamic
lighting using a simple multiplication gives perceptually plausible
[Langer and Bülthoff 2000] results at high framerates. To account
for dynamic scenes, Kontkanen et al. [2005] introduced AO Fields,
which allow rigid translation and rotation of objects and specialized
solutions for animated characters exist [Kontkanen and Aila 2006].



Deforming surfaces and bounces of indirect light are addressed by
Bunnell [2005] using a set of disks to approximate the geometry.
A more robust version was presented by Hoberock and Jia [2007],
which was further extended to point-based ambient occlusion and
interreflections by Christensen [2008]. Mendez et al. [2006] com-
pute simple color bleeding effects using the average albedo of the
surrounding geometry.

These methods either use a discretization of the surface or rely on
ray-tracing, which both do not scale well to the amount of dynamic
geometry used in current interactive applications like games. There-
fore, instead of computing occlusion over surfaces, recent methods
approximate AO in screen space (SSAO)[Shanmugam and Arikan
2007; Mittring 2007; Bavoil et al. 2008; Filion and McNaughton
2008]. The popularity of SSAO is due to its simple implemen-
tation and high performance: It is output-sensitive, applied as a
post-process, requires no additional data (e.g. surface description,
spatial acceleration structures for visibility like BVH, kD-trees or
shadow maps) and works with many types of geometry (e.g. dis-
placement / normal maps, vertex / geometry shaders, iso-surface
raycasting). Image-space methods can also be used to efficiently
simulate subsurface scattering [Mertens et al. 2005]. At the same
time, SSAO is an approximation with many limitations, that also
apply to this work, as we will detail in the following sections.

AO is a coarse approximation to general light transport as eg. in
PRT [Lehtinen and Kautz 2003], which also supports directional
occlusion (DO) and interreflections. Pre-computation requires to
store high amounts of data in a compressed form, often limiting the
spatial or directional resolution. Our approach allows to both resolve
very small surface details and all angular resolutions: ,,no-frequency”
AO, all-frequency image-based lighting and sharp shadows from
point lights. While PRT works well with distant lighting and static
geometry of low to moderate complexity, its adaptation to real ap-
plications can remain involved, while SSAO is of uncompromised
simplicity.

In summary, our work takes advantage of information that is already
computed during the SSAO process [Shanmugam and Arikan 2007]
to approximate two significant effects which contribute to the realism
of the results: Directional occlusion and indirect bounces, both
in real-time, which was previously impossible for dynamic, high-
resolution geometry.

3 Near-field Light Transport in Image Space

To compute light transport in image space, our method uses a frame-
buffer with positions and normals [Segovia et al. 2006] as input, and
outputs a framebuffer with illuminated pixels using two rendering
passes: One for direct light and another one for indirect bounces.

Direct Lighting using DO Standard SSAO illuminates a pixel by
first computing an average visibility value from a set of neighboring
pixels. This occlusion value is then multiplied with the unoccluded
illumination from all incoming directions. We propose to remove
this decoupling of occlusion and illumination in the following way:

For every pixel at 3D position P with normal n, the direct radi-
ance Ldir is computed from N sampling directions ωi, uniformly
distributed over the hemisphere, each covering a solid angle of
∆ω = 2π/N :

Ldir(P) =

N∑
i=1

ρ

π
Lin(ωi)V (ωi) cos θi∆ω.

Each sample computes the product of incoming radiance Lin, vis-
ibility V and the diffuse BRDF ρ/π. We assume that Lin can be

efficiently computed from point lights or an environment map. To
avoid the use of ray-tracing to compute the visibility V , we approxi-
mate occluders in screen space instead. For every sample, we take
a step of random length λi ∈ [0 . . . rmax] from P in direction ωi,
where rmax is a user-defined radius. This results in a set of sam-
pling points P + λiωi, located in a hemisphere, centered at P, and
oriented around n. Since we generated the sampling points as 3D
positions in the local frame around P, some of them will be above
and some of them will be below the surface. In our approximate
visibility test, all the sampling points below the surface of the nearby
geometry are treated as occluders. Fig. 2 (left) shows an example

1

A

B

C

D

P

Env. map

n

C

P

Env. map

max
r

A
B

D

Figure 2: Left: For direct lighting with directional occlusion, each
sample is tested as an occluder. In the example, point P is only
illuminated from direction C. Right: For indirect light, a small patch
is placed on the surface for each occluder and the direct light stored
in the framebuffer is used as sender radiance.

with N = 4 sampling points A,B,C and D: The points A, B and D
are below the surface, therefore they are classified as occluders for
P, while sample C is above the surface and classified as visible. To
test if a sampling point is below the surface, the sampling points are
back-projected to the image. Now, the 3D position can be read from
the position buffer and the point can be projected onto the surface
(red arrows). A sampling point is classified as below the surface if
its distance to the viewer decreases by this projection to the surface.
In the example in Fig. 2, the samples A,B and D are below the sur-
face because they move towards the viewer, while sample C moves
away from the viewer. In contrast to SSAO, we do not compute the
illumination from all samples, but only from the visible directions
(Sample C). Including this directional information can improve the
result significantly, especially in case of incoming illumination with
different colors from different directions. As shown in Fig. 3, we
can correctly display the resulting colored shadows, whereas SSAO
simply displays a grey shadow at each location.

Indirect Bounces To include one indirect bounce of light, the
direct light stored in the framebuffer from the previous pass can be
used: For each sampling point which is treated as an occluder (A, B,
D), the corresponding pixel color Lpixel is used as the sender radi-
ance of a small patch, oriented at the surface (see Fig. 2 right). We
consider the sender normal here to avoid color bleeding from back-
facing sender patches. The additional radiance from the surrounding



Figure 3: The top row shows the difference between no AO, standard SSAO, our method with directional occlusion (SSDO) and one additional
bounce. In this scene an environment map and an additional point light with a shadow map are used for illumination. The insets in the bottom
row show the differences in detail. With SSDO, red and blue shadows are visible, whereas AO shadows are completely grey (bottom left). The
images on the bottom right show the indirect bounce. Note the yellow light, bouncing from the box to the ground. The effect of dynamic lighting
is seen best in the supplemental video.

geometry can be approximated as

Lind(P) =

N∑
i=1

ρ

π
Lpixel(1− V (ωi))

As cos θsi cos θri

d2
i

where di is the distance between P and occluder i (di is clamped to
1 to avoid singularity problems), θsi and θri are the angles between
the sender/receiver normal and the transmittance direction. As is
the area associated to a sender patch. As an inital value for the
patch area we assume a flat surface inside the hemisphere. So the
base circle is subdivided into N regions, each covering an area of
As = πr2max/N . Depending on the slope distribution inside the
hemisphere, the actual value can be higher, so we use this parameter
to control the strength of the color bleeding manually. In the example
in Fig. 2, no indirect lighting contribution is calculated for patch A,
because it is back-facing. Patch C is in the negative half-space of
P, so it does not contribute, too. Patches B and D are senders for
indirect light towards P. Fig. 3 shows bounces of indirect light.

Implementation Details Note, that classic SSAO [Shanmugam
and Arikan 2007] has similar steps and computational costs. Our
method requires more computation to evaluate the shading model,
but a similar visibility test. In our examples, we use additional
samples for known important light sources (e.g. the sun), applying
shadow maps that capture shadows from distant geometry instead
of screen-space visibility. We use an M × N -texture to store M
sets of N pre-computed low-discrepancy samples λiωi. At runtime,
every pixel uses one out of the M sets. In a final pass we apply a
geometry-sensitive blur [Segovia et al. 2006] to remove the noise
which is introduced by this reduction of samples per pixel.

4 Multiple Pixel Values

Since we are working in screen space, not every blocker or source
of indirect light is visible. Fig. 4 shows an example where the color
bleeding is smoothly fading out when the source of indirect illumi-
nation becomes occluded. There are no visually disturbing artifacts,
as shown in the accompanying video, but the results are biased. For

a less biased solution, we present two approaches overcoming such
limitations: Depth peeling and additional cameras.

Figure 4: Four frames from an animation. In the first frame light is
bounced from the yellow surface to the floor (see arrow). While the
yellow surface becomes smaller in screen space the effect fades out
smoothly.

Single-depth Limitations The blocker test described in the pre-
vious section is an approximation, since only the first depth value
is known and information about occluded geometry is lost in a sin-
gle framebuffer. Sampling points can therefore be misclassified, as
shown in Fig. 5 (left). In certain situations, we can miss a gap of
incoming light or classify a blocked direction as visible. While a
missed blocker (sample B) can be corrected by simply increasing
the number of samples for this direction, the gap at sample A (and
the indirect light coming from the vicinity of A) can not be detected
from the single viewpoint, because we have no information about
the scene behind the first depth value z1.

Depth Peeling When using depth peeling [Everitt 2001], the first
n depth values are stored after n render passes for each pixel in the
framebuffer. This allows us to improve the blocker test, since we
have more information about the structure of our scene. Instead of
just testing if a sampling point is behind the first depth value z1,
we additionally test if the sampling point is in front of the second
depth value z2. When using two-manifold geometry, the first and
second depth value correspond to a front - and a backface of a
solid object, so a sampling point between the two faces must be
inside this object (see Fig. 5 right). To reconstruct all shadows for
scenes with higher depth complexity, all pairs of consecutive depth



1

A B

P

Env. map

n

max
r

A

P

Env. map

n

max
r

B

1
z

2
z

1
z

Figure 5: Problems with screen-space visibility (left): The visible
sample A is classified as an occluder because its projected position
is closer to the viewer. Sample B is above the surface, but the
corresponding direction is blocked, so P is incorrectly illuminated
from this direction. Solutions (right): Using depth peeling with two
layers, sample A is classified as visible, because it is not between
the first and second depth value. When using more samples for the
direction of B, the occluder can be found.

values (third and forth depth value and so on) must be evaluated
in the same way [Lischinski and Rappoport 1998]. Fig. 6 shows
screen-space shadows of a point light. For a single point light, theN
samples are uniformly distributed on a line segment of length rmax,
directed towards the light source. Since there is no information
about the actual width of the blocker from a single depth buffer,
the shape of the shadow depends on rmax. A correct shadow can
only be displayed with depth peeling (avg. overhead +30%). In
addition to the visibility, color bleeding effects from backfacing or
occluded geometry can be displayed with multiple layers, since we
can compute the direct lighting for each depth layer.

Figure 6: Screen-space shadows for different values of rmax.

Additional Cameras Depth peeling removes many problems re-
lated to SSDO. Alternatively, different camera positions can be used
instead of different depth layers to view hidden regions. Beside
gaining information about offscreen blockers, a different camera po-
sition can be especially useful for polygons which are viewed under
a grazing angle. These polygons cannot faithfully be reproduced,
so color bleeding from such polygons vanishes. When using an
additional camera, these sources of indirect light can become visi-
ble. The best-possible viewpoint for an additional camera would be
completely different from the viewer camera, e.g. rotated about 90
degrees around the object center to view the grazing-angle polygons
from the front. However, this introduces the problem of occlusion:
In a typical scene many of the polygons visible in the viewer camera
will be occluded by other objects in the additional camera view. Of

course, this can be solved by using depth peeling for the additional
camera as well. A faster solution would be a large value for the near
clipping plane, adjusted to the sample radius rmax, but this is hard
to control for the whole image. As a compromise, we used four
additional cameras with a standard depth buffer, all directed to the
same center-of-interest as the viewer camera. The relative position
of an additional camera to the viewer camera is set manually with
a normalized displacement vector. To adapt to the scene size, each
displacement vector is scaled with the radius of the bounding sphere
of the scene.

Figure 7: Comparing occlusion (top) and bounces (bottom) of a
single view (left, 49.2 fps) with multiple views (middle, 31.5 fps).
Multiple views allow surfaces occluded in the framebuffer to con-
tribute shadows or bounces to unoccluded regions. Using multiple
views, occluded objects still cast a shadow that is missed by a single
view (top right). An occluded pink column behind a white column
bounces light that is missed using a single view (lower right).

Using an additional camera can display color bleeding from oc-
cluded regions, offscreen objects and grazing-angle polygons (Fig. 7
(bottom)). We use framebuffers with a lower resolution for the ad-
ditional cameras. Therefore, memory usage and fillrate remains
unaffected. The drawback of this extension is that vertex transfor-
mation time grows linearly with the number of cameras. For a scene
with simple geometry (e.g. Fig. 7), the average overhead using four
cameras is +58% while for large scenes (e.g. Fig. 12, 1M polygons)
it is +160%. When using an alternative method like iso-surface
raycasting or point rendering, the number of rays resp. points per
view can also be kept constant, giving multiple views the same
performance as a single view.

5 Integration in Global Illumination

We believe that screen-space approaches can improve the results of
global illumination simulations in case of complex geometry. To
avoid a time-consuming solution with the original geometry, the
basic idea is to first compute the global illumination on a coarse rep-
resentation of the geometry. Then, the lighting details can quickly
be added in screen space at runtime. We demonstrate this idea for
the two cases of 1. Environment Map Illumination and 2. Instant
Radiosity [Keller 1997], where indirect light is computed from a re-
flective shadow map [Dachsbacher and Stamminger 2005], resulting
in a set of virtual point lights (VPLs). In contrast to our previous
application (Sec. 3), we now compute all occlusions instead of only
the small-scale shadows. Therefore, the indirect illumination is com-



puted from each VPL and the indirect visibility is computed with a
shadow map for each VPL. When using shadow mapping, a simpli-
fied, sampled representation of the scene (the depth map) is created
for visibility queries. Additionally, a depth bias must be added to
the depth values in the shadow map to avoid wrong self-occlusions.
While this removes the self-occlusion artifacts, shadows of small
surface details and contact shadows are lost, especially when the
light source illuminates from a grazing angle. These contact shad-
ows are perceptually important, without them, objects seem to float
over the ground. Instead of applying high-resolution shadow maps
in combination with sophisticated methods to eliminate the bias
problems, we can use our screen-space approach to reconstruct the
shadows of the small details and the contact shadows.

Shadow Mapping and Depth Bias Shadow Mapping [Williams
1978] generates a depth texture from the point of view of the light
source and compares the depth values stored in the texture with
the real distance to the light source to decide whether a point is
in shadow or not. Since each texel stores the depth value of the
pixel center, we can think of a texel as a small patch, located on the
surface of the geometry (see Fig. 8). The orientation of the patches
is parallel to the light source, so the upper half of each patch is
above the surface. Since this part is closer to the light than the actual
surface, self-occlusion artifacts appear (Fig. 9 left). To remove this
artifact, the patches must be moved completely below the surface.
The standard solution for this is to add a depth bias b = p

2
· tan(α),

where p is the size of one patch in world coordinates and α is the
angle between the light direction and the surface normal (see Fig. 8).
The patch size p can be computed from the distance to the light, the
texture resolution and the opening angle of the spot.

Screen Space Shadow Correction Fig. 8 shows that we will
not be able to display shadows of small details, e.g. at a point
P, with a shadow map. Therefore we test each framebuffer pixel,
which is not occluded from the shadow map, for missing shadows in
screen space. Since we know the amount of bias b we introduced,
the basic idea is to place a few samples in this undefined region.
More precisely, we place a user-defined number of samples on a
line segment between P and P + b · l, where l is a unit vector
pointing to the light source. For each of the sampling points we
perform the same occlusion test as described in Section 3 and 4. If
one of the sampling points is classified as an occluder for P, we
draw a shadow at the corresponding pixel in the framebuffer. In this
way, we adapt our shadow precision to the precision of the visible
occluders: As soon as an occluder becomes visible in screen space,
we can detect its shadow in screen space. Occluders smaller than
the framebuffer resolution will not throw a shadow. Fig. 9 shows
how contact shadows can be filled in screen space.

Global Illumination Fig. 10 shows how SSDO can be used for
natural illumination. Here, an environment map is represented by
a set of point lights with a shadow map for each light. Note the
lost shadows of small details due to shadow mapping which can
be seamlessly recovered in screen space. For each shadow map, 8
samples were used to detect occluders in screen space. Multiplying a
simple ambient occlusion term on top of the image would not recover
such illumination details correctly [Stewart and Langer 1997].

Fig. 11 shows the integration of our method into an Instant Radiosity
simulation. Again, missing contact shadows can be added in screen
space. A related problem with Instant Radiosity is, that clamping
must be used to avoid singularity artifacts for receivers close to a
VPL. We can add such bounces of light in screen space for nearby
geometry, as shown in Fig. 12. Although our estimated formfactor
has a singularity too, the local density of samples is much higher

10/22/2008

1

α

p

α

b

P

n

l

Figure 8: To remove the wrong self-occlusion, each shadow map
texel (shown in red) must be moved below the surface (black). This
bias b depends on the slope α of the incoming light direction. Due
to the coarse shadow map resolution and this bias, shadows of
small scale geometry are lost in this way, for example at point P .
To reconstruct these shadows, a few samples are created on a line
segment of length b, starting at P , directed towards the light source.
For each of the samples, we use our image-based blocker test.

Figure 9: Shadows from small occluders (1024× 768 framebuffer,
1024 × 1024 depth map), from left to right: Without depth bias,
self-shadowing artifacts are visible. Classic depth bias removes
the wrong self-occlusion, but shadows at contact points disappear
(218 fps). Screen-space visibility removes depth bias using a single
depth buffer (16 samples, 103 fps) or depth peeling (8 samples,
73 fps).

than the density of the VPLs. This idea of correction in screen
space can be further extended to any type of illumination which
is represented from VPLs, e.g. illumination from area lights and
all other approaches to visibility having a limited resolution rmax

[Lehtinen and Kautz 2003; Ren et al. 2006; Ritschel et al. 2008].

6 Results

In the following we present our results, rendered with a 3 GHz CPU
and an NVIDIA GeForce 8800 GTX.

Performance Our method works completely in image space,
therefore we can display directional occlusion and indirect bounces
for large scenes at real-time framerates. Table 1 shows the timing
values for the factory scene (Fig. 1, 537k polygons) using a single
camera and a single depth layer. Without depth peeling or addi-
tional cameras, including directional occlusion adds only a modest
amount of overhead to SSAO: +3.6% for DO and +31.1% for DO
with one bounce. While adding DO effects incurs a negligible over-
head, an additional diffuse bounce requires a little more computation
time. We assume that the shader is bound by bandwidth and not by
computation.



Figure 10: Depth bias in this natural illumination rendering
(512×512, 54.0 fps) is removed using SSDO combined with shadow
mapping (25.2 fps). We use 256 VPLs with a 512× 512 depth map
each.

Figure 11: Instant Radiosity with screen-space shadow correction.
Shadows of small details, like the toes, are lost due to the depth bias.
These small shadows can be restored in image space.

Time-Quality Tradeoff Including depth peeling and additional
cameras results in an overhead of 30%− 160% for our test scenes
(2 depth layers or 4 cameras). The use of these extensions is a time-
quality tradeoff. For environment map illumination, we observed
good results without them, since illumination comes from many
directions and most of the visible errors are hidden. Fig. 13 shows
a comparison of our (unextended) method with a ground truth path
tracing image, generated with PBRT [Pharr and Humphreys 2004].

Animated Scenes Since our method operates completely in im-
age space, animated scenes can be displayed without any restric-
tions. The accompanying video shows moving colored blocks and
animated objects without temporal flickering.

7 Discussion

7.1 Perception

Adding bounces and DO improves the perception of meso-structures,
bridging geometry and material in a consistently lit way. One prob-
lem with classic AO is, that lighting is completely ignored: ev-
erything in an occluder’s vicinity is darkened equally, even if the
lighting is not isotropic. In many scenarios, like skylights (Fig. 1 and
3), lighting is smooth but still has a strong directional component.
Using classical AO under varying illumination introduces objec-
tionable artifacts since the contact shadows remain static while the
underlying shading changes. This results in an impression of dirt,
because a change in reflectivity (dust, dirt, patina) is the perceptually

Figure 12: Instant Radiosity with shadow correction and an addi-
tional indirect bounce in screen space. Note the additional contact
shadows and the color bleeding effects. The indirect light is slightly
scaled here to make the additional effects more visible.

Table 1: Typical frame rates, using an Nvidia Geforce 8800 GTX.
For SSAO we use a single pre-filtered environment map lookup
instead of one environment lookup per sample for DO. Overhead is
relative to SSAO alone. The frame rate for pure rendering without
any occlusion is 124 fps at 1600×1200. M is set to 4× 4.

Resolution Samples
Time costs

SSAO SSDO + 1 Bounce
fps fps +% fps +%

1024×768 N = 8 81.0 81.3 0.2 65.8 19.3
N = 16 58.0 56.5 2.6 40.5 30.2

1200×960 N = 8 37.7 37.5 0.5 25.5 32.4
N = 16 25.4 23.6 7.1 14.7 22.2

1600×1200 N = 8 24.8 24.2 2.4 15.9 35.9
N = 16 16.8 15.3 8.9 9.0 46.4

most plausible explanation for such equal darkening under varying
illumination. With proper DO, details in the meso-structure cast
appropriate miniature shadows (softness, size, direction, color) that
relate to the macro-illumination, as illustrated in Fig. 3.

7.2 Quality

A screen-space approach approximates the geometry in 3D spa-
tial proximity of pixel p with a set of nearby pixels P in 2D. This
requires that the local geometry is sufficiently represented by the
nearby pixels. By adjusting the radius rmax of the hemisphere, shad-
ows from receivers of varying distance can be displayed. Using a
small radius results in shadows of only tiny, nearby cavities whereas
larger shadows of even distant occluders can be displayed with a
large hemisphere. Fig. 14 shows the effect of varying the size of
rmax. We use a smooth-step function to fade out shadows from
blockers close to the border of the hemisphere to avoid cracks in
the shadow if a large blocker is only partially inside the hemisphere.
The radius is adjusted manually for each scene, finding a good value
automatically is difficult. For a closed polygonal model, an inital
value for rmax can be found by computing the average distance
between two local maxima in the geometry. With only a single
depth layer, wrong shadows can appear at the edges of objects (an
effect similar to depth darkening [Luft et al. 2006]) if a large value is
chosen for rmax. This happens because the frontmost object can be
misclassified as an occluder, as shown in Fig. 6 left. While this effect
enhances the appearance of still images, a sudden darkening around
edges can be distracting for moving images (see the accompanying
video). When reducing the radius, the width of the darkening around
edges becomes smaller, but some real shadows disappear, too. Depth



Figure 13: Comparison of our approach with a one-bounce path
tracing result of PBRT. The scene is illuminated by an environment
map with one additional point light. Several lights and shadows
are in the wrong place and appear two-dimensional. Although
some haloing artifacts are introduced, the directional occlusion and
indirect lighting effects present in the ground truth rendering are
faithfully reproduced with our technique.

peeling can solve this problem, but with additional rendering time.
From a theoretical point of view, all shadows can be correctly dis-
played in screen space when depth peeling and additional cameras
are used, because the scene structure is captured completely. How-
ever, a large radius and many sampling points N must be used to
avoid missing small occluders, so standard techniques like shadow
mapping should be preferred for distant blockers, SSDO then adds
the missing small-scale details.

Besides the limitations (and solutions) discussed in Section 4, sam-
pling and illumination bias affect the quality.

Sampling When P gets small in the framebuffer, because it is far
away or appears under grazing angles, the SSAO effect vanishes.
Gradually increasing the distance or the angle will result in a smooth,
temporally coherent fading of our additional effects. Increasing
distance or increasing the angle gradually, will also give a gradual
fading and will be temporally coherent. However, this issue can
be the most distracting: pixels belonging to surfaces only a few
pixels in size sometimes receive no bounces or occlusion at all.
Still, this is an underlying problem of the original SSAO and our
examples circumvent it by using high-resolution framebuffers (e.g.
1600×1200).

Bias in Illumination Since our algorithm is geared towards real-
time display, we accept a biased solution which is different from a
physical solution. However, some of the errors can be reduced by
spending more computation time. When using high-resolution depth
buffers in combination with multiple cameras and depth peeling
(adjusted to the depth complexity of the scene), the whole scene is
captured and a correct visibility test can be computed. This means
that SSDO can compute the correct illumination for a point when
increasing the number of samples, the remaining error is a discretiza-
tion in visibility. The bounce of indirect light is more complicated:
Here we use the projected positions of uniformly distributed sam-
ples. After the projection, the samples no longer follow a known
distribution. This means that some regions have more samples while
other regions suffer from undersampling. Adding more depth layers
and multiple viewpoints can make every source of indirect light visi-
ble, but the sampling distribution is still non-uniform. Additionally,

Figure 14: SSDO with one indirect bounce for different values of
rmax. In this case, the illumination is computed from a pointlight
with a shadow map and an additional environment map. Note that
using a smaller value for rmax decreases the size of the screen-space
shadows as well as the influence region of the indirect bounce.

we only use an approximated form factor. In our experiments, we
have not observed visible artifacts from these sources of error. We
consider the unbiased solution for indirect light in screen space as
future work.

We conclude, that our method does not introduce any additional
(temporal) artifacts. In the worst case our approach fades into tradi-
tional SSAO which again is equivalent to no AO at all in the worst
case. We expect the distant and bounced incident radiance to be
sufficiently smooth, like the skylight in Fig. 1. High-frequency envi-
ronment maps require either pre-smoothing or higher sampling rates.
We have not observed any noise caused by high frequency changes
in radiance (e.g. at direct shadow boundaries).

8 Conclusions

We presented two generalizations of screen-space ambient occlusion
that add directional occlusion and diffuse indirect bounces. Both
extensions considerably improve realism in the best case and look
like the unextended technique in the worst case. We incur a modest
computational overhead without introducing any additional artifacts,
allowing real-time display of complex and dynamic scenes. In future
work, we will investigate if an unbiased computation of indirect
light is possible in screen space. Additionally, blocking informa-
tion could be stored for each pixel and reused for the next frame.
Other possible extensions would be multiple indirect bounces, spec-
ular materials, subsurface scattering and importance sampling. One
could think about omitting the projection step entirely: Instead of
using the framebuffer to find proximity between pixels, an accel-
eration structure like a hash table could be used to find proximity
between points in space. We believe that the optimal combination of
screen-space and object-space approaches is an interesting avenue of
further research bringing together physically plausible illumination
of dynamic complex scenes and real-time frame rates.

Acknowledgements

We thank Zhao Dong, Derek Nowrouzezahrai, Karol Myszkowski,
Tom Annen and the anonymous reviewers for their useful comments
and suggestions. The animal animation sequences are courtesy of
MIT CSAIL, the factory scene is from Dosch Design. The volu-
metric skull data sets are 3D scans from the University of Texas at



Austin (UTCT). The tortile column model is scanned data from VCL
PISA, the buddha model is taken from the aim-at-shape repository.

References

BAVOIL, L., SAINZ, M., AND DIMITROV, R. 2008. Image-space
horizon-based ambient occlusion. In SIGGRAPH ’08: ACM
SIGGRAPH 2008 talks, ACM, New York, NY, USA, 1–1.

BUNNELL, M. 2005. Dynamic Ambient Occlusion and Indirect
Lighting. In GPU Gems 2, M. Pharr, Ed. Addison Wesley, Mar.,
ch. 2, 223–233.

CHRISTENSEN, P. H. 2008. Point-Based Approximate Color Bleed-
ing. Pixar Technical Memo 08-01.

COOK, R. L., AND TORRANCE, K. E. 1981. A reflectance model
for computer graphics. In SIGGRAPH ’81: Proceedings of the
8th annual conference on Computer graphics and interactive
techniques, ACM, New York, NY, USA, 307–316.

DACHSBACHER, C., AND STAMMINGER, M. 2005. Reflective
Shadow Maps. In Proceedings of the ACM SIGGRAPH 2005
Symposium on Interactive 3D Graphics and Games, 203–213.

EVERITT, C., 2001. Introduction Interactive Order-Independent
Transparency. NVidia Technical Report.

FILION, D., AND MCNAUGHTON, R. 2008. Effects & techniques.
In SIGGRAPH ’08: ACM SIGGRAPH 2008 classes, ACM, New
York, NY, USA, 133–164.

HOBEROCK, J., AND JIA, Y. 2007. High-Quality Ambient Occlu-
sion. In GPU Gems 3. Addison-Wesley, Reading, MA, ch. 12.

KELLER, A. 1997. Instant Radiosity. In Proceedings of ACM
SIGGRAPH, 49–56.

KONTKANEN, J., AND AILA, T. 2006. Ambient Occlusion for
Animated Characters. In Eurographics Symposium on Rendering.

KONTKANEN, J., AND LAINE, S. 2005. Ambient Occlusion
Fields. In Proceedings of ACM SIGGRAPH 2005 Symposium on
Interactive 3D Graphics and Games, 41–48.

LANDIS, H. 2002. RenderMan in Production. In ACM SIGGRAPH
2002 Course 16.

LANGER, M. S., AND BÜLTHOFF, H. H. 2000. Depth Discrimi-
nation From Shading Under Diffuse Lighting. Perception 29, 6,
649 – 660.

LEHTINEN, J., AND KAUTZ, J. 2003. Matrix Radiance Transfer.
In 2003 ACM Symposium on Interactive 3D Graphics, 59–64.

LISCHINSKI, D., AND RAPPOPORT, A. 1998. Image-Based Ren-
dering for Non-Diffuse Synthetic Scenes. In Ninth Eurographics
Workshop on Rendering, Eurographics, 301–314.

LUFT, T., COLDITZ, C., AND DEUSSEN, O. 2006. Image Enhance-
ment by Unsharp Masking the Depth Buffer. ACM Trans. Graph.
25, 3, 1206–1213.

MENDEZ, A., SBERT, M., CATA, J., SUNYER, N., AND FUN-
TANE, S. 2006. Realtime Obscurances with Color Bleeding.
In ShaderX4: Advanced Rendering Techniques. Charles River
Media, 121–133.

MERTENS, T., KAUTZ, J., BEKAERT, P., REETH, F. V., AND
SEIDEL, H.-P. 2005. Efficient Rendering of Local Subsurface
Scattering. Comput. Graph. Forum 24, 1, 41–49.

MITTRING, M. 2007. Finding Next-Gen: CryEngine 2. In SIG-
GRAPH ’07: ACM SIGGRAPH 2007 courses, ACM, New York,
NY, USA, 97–121.

PHARR, M., AND HUMPHREYS, G. 2004. Physically Based Ren-
dering : From Theory to Implementation. Morgan Kaufmann.

REN, Z., WANG, R., SNYDER, J., ZHOU, K., LIU, X., SUN, B.,
SLOAN, P.-P., BAO, H., PENG, Q., AND GUO, B. 2006. Real-
time Soft Shadows in Dynamic Scenes using Spherical Harmonic
Exponentiation. In SIGGRAPH ’06: ACM SIGGRAPH 2006
Papers, ACM, New York, NY, USA, 977–986.

RITSCHEL, T., GROSCH, T., KIM, M. H., SEIDEL, H.-P., DACHS-
BACHER, C., AND KAUTZ, J. 2008. Imperfect Shadow Maps
for Efficient Computation of Indirect Illumination. ACM Trans.
Graph. (Proc. of SIGGRAPH ASIA 2008) 27, 5.

SEGOVIA, B., IEHL, J.-C., MITANCHEY, R., AND PÉROCHE, B.
2006. Non-interleaved Deferred Shading of Interleaved Sample
Patterns. In SIGGRAPH/Eurographics Graphics Hardware.

SHANMUGAM, P., AND ARIKAN, O. 2007. Hardware Accelerated
Ambient Occlusion Techniques on GPUs. In Proceedings of
ACM Symposium in Interactive 3D Graphics and Games, ACM,
B. Gooch and P.-P. J. Sloan, Eds., 73–80.

STEWART, A. J., AND LANGER, M. S. 1997. Towards Accurate
Recovery of Shape from Shading under Diffuse Lighting. IEEE
Transactions on Pattern Analysis and Machine Intelligence 19,
1020–1025.

WILLIAMS, L. 1978. Casting Curved Shadows on Curved Surfaces.
In Proceedings of ACM SIGGRAPH, 270–274.

ZHUKOV, S., IONES, A., AND KRONIN, G. 1998. An Ambient
Light Illumination Model. In Eurographics Rendering Workshop
1998, 45–56.


