

Secrets of CryENGINE 3 Graphics Technology

Contents:
="Rendering Pipeline
=Position Reconstruction
=Coverage Buffer
=Deferred Lighting
=Shadows
=Screen Space Techniques
=Deferred Techniques
=Batched HDR Post Processing
=Stereo Rendering

Secrets of CryENGINE 3 Graphics Technology

Nickolay Kasyan Nicolas Schulz Tiago Sousa
Senior Graphics Engineer Senior Graphics Engineer Principal Graphics Engineer

Crytek

@ SIGGRAPH2011

—

Physically, Based Rendering @sueempuzoﬁ

= Linear Correct HDR Rendering [Gritz 2008] [Reinhard 2010]
= Minimal G-Buffer: Depth and Normals

= QOpaque, decals, def. decals,terrain layers
= Deferred Lighting

= Ambient, env. lighting probes

= GI, SSDO, RLR, Lights

= Physically based shading

= Opaque / Transparent passes
= HDR /LDR Posts

@ SIGGRAPH2011

= S|im G-Buffer

= A8B8G8RS8 World Space BF Normals + Glossiness
= Readback D24S8 Depth + Stencil bits for tagging indoor surfaces

= 2x A2B10G10R10F_EDRAM for Diffuse and Specular buffers

= X360: Resolved to A2B10G10R10 [Cook 2008]
= PS3: 2x ABB8G8RS8 encoded in RGBM

= Encoding <=> No HW blending possible. Workaround: r/w from dst RT
= PC: 2x A16B16G16R16F (most general format)

= A2B10G10R10F EDRAM for scene target

= PS3: ABB8G8R8 RGBM encoded for opaque, FP16 for transparents
= PC: A16B16G16R16F

Z-Buffer Depth Caveats € 3 soommerzor

= Hyperbolic distribution

Needs conversion to linear space before using in shaders

//Constants

g_ProjRatio.xy = float2(zfar / (zfar-znear), znear / (znear-zfar));
//HLSL function

float GetLinearDepth (float fDevDepth)

{ return g ProjRatio.y/ (fDevDepth-g ProjRatio.x) ;}

Problem: First person view objects

Depth buffer is used to prevent overlapping FPV objects with the rest
of the scene

Different FOV and near/far plane (art specific choice)
Different depth range to prevent actual overlapping
=> Deferred techniques don’t work 100% for such objects

Addressing First Person View @J@{L@@t@ SIGGRAPHZ0'

= Qur final solution:
= Modifying depth reconstruction function
= Convert hardware depth to linear one
= Different depth scale for first person view object
= Selecting based on depth

float GetLinearDepth (float fDevDepth) ({
float bNearDepth = step (fDevDepth, g PS DepthRangeThreshold) ;
float2 ProjRatio.xy = lerp(g_PS ProjRatio.xy, g PS NearestScaled.xy, bNearDepth) ;
return ProjRatio.y/ (fDevDepth-ProjRatio.x) ;

Reconstructing Pesition fram Depth @sleemuzoﬁ

= |dea: linearly transform VPOS from screen space S directly to
target homogeneous space W (shadow space or world space)

float4 HPos = (vStoWBasisZ + (vStoWBasisX*VPos.x)+ (vStoWBasisY*VPos.y)) *
fSceneDepth;

HPos += vCamPos.xXyzw;

= Direct transformation from screen oW
. . Y = vStoWBasisY
clip space to homogeneous matrix

= VPOS is simplest way to render
deferred light volumes

= Separate adjustment for s3D

Geometrical Meaning of Reconstruction

Coverage Buffer @ SIGGRAPH2011

= Mostly outdoors for Crysis2
= Approximately 70%
= Portals or PVS not efficient there

= Coverage Buffer as main occlusion culling system

= Essentially low resolution depth buffer

= Coarse CPU rasterization of object AABBs/OBBs for visibility z-
tests

= Too slow to prepare fully detailed C-Buffer on CPU
= Huge computation cost

= Full rendering pipeline has to be duplicated in software to obtain
all details for C-Buffer

Coverage Buffer ’[2 SIGGRAPH2011

= Read-back of previous frame’s GPU depth buffer on CPU
= Downscaling ZBuffer on GPU (max filter) after G-Buffer pass
= Culling done by rasterizing BBoxes in a separate CPU thread

Original: 1920x1080
Downscaled: 256x128

= Used on X360/PS3 and DX11 HW

= Consoles perfect for this (1 frame latency)
= Read-back latency on PC is higher but still acceptable (up to 4 frames)

= C-Buffer size limited to 256x128 in Crysis 2 on consoles
= Problem: Mismatch between previous/current frame
cameras

= Results in wrong visibility tests

Coverage Buffer Reprojection €2 sccnapreor
Ended up using C-Buffer CPU reprojection from prev. frame camera
= Point splatting of reprojected fragments
= Camerainfo is encoded into the c-buffer data
CPU readback and reprojection in separate thread
= ~2ms on SPU, ~3-4ms on Xbox 360 with vectorized code
Stitching of holes inside C-Buffer after reprojection
= 3x3 dilation pass

= Remaining C-Buffer holes: we assume objects are visible

Reprojection improved culling efficiency greatly

= Solved all kind of occlusion test artifacts, detected invalid areas

= Works more efficiently with higher framerate ®Remaining C-Buffer holes
after reprojection

Deferred Lighting: Ambient @sneemmzon

= Qutdoor / Indoor

= Stencil tagged regions in G-Buffer passes

= FS Quad and indoor volume BBox
= Additive blended

Deferred Lighting: Environment @*ﬁ@}a@ SIGGRAPH2011

= Accurate diffuse lighting and specular lighting
= Artist pick important sampling locations
= HDR encoded (RGBM)
= Linear blending for diffuse and specular cube map
= Spherical light volume # § : 4
= G-Buffer material glossi ¥/ D

= Consistent specular behav|g
= Alpha blended passes? B

Deferred Lighting: Envirenment robé,’;? SIGGRAPH2011

D

O, RLR, L@leammzon

= Add Gl [Kaplanyan 2010] (add blend)
= Apply SSDO (mul blend) and RLR (alpha blend)

= Add light sources

= Lights rendering depends on screen coverage heuristics

= FS gquads with stencil volumes pre-passes, convex light volumes
or 2D quads

= Normalized Blinn-Phong [Hoffman 2010]
= For C2, only projectors and point lights
= Limited shadow casters count on consoles - go bananas on PC

=
g‘{ SIGGRAPH2011

Deferred Shadows @ SIGGRAPH2011

= Shadow mask for sun

= Special render target to accumulate shadow occlusion

= Shadow mask combines multiple shadowing technique on top on
each other before using with actual shading

= Point light shadows rendered directly to the light buffer

t
v" ‘n!\\

SURshadow mask

Cascaded Shadows Maps @ SIGGRAPH2011

= Cascaded shadow maps used since Crysis 1

= Cascades Splitting Scheme

= Approximate Logarithmic texel density distribution

= Shadow frustums adjusted to cover camera view :
frustum conservatively Pt 1 H——

= QOrientation for shadow frustums is fixed in world space

= More cascades allow

= |mproved texel density, reduced acne and improved self-shadowing for wider shadow
range due to better approximation of the logarithmical distribution

* For each cascade snap the shadow frustum to the SM’s texel grid

Deferted Shadow Passes €2 sccnprzon

= Shadow passes for cascades/point lights rendered in deferred way

= Potential shadow receiving areas tagged in stencil buffer by rendering

frustum volumes
= Allows to have more sophisticated splitting into cascade
= Pick a cascade with the highest resolution in overlapping regions
= Avoids wasting of shadow map space

@ SIGGRAPH2011

= Not all the cascades are updated during a single frame

= Update cost distributed across several frames

= Performance reasons (PS3 particularly)

= Allows us to have more cascades — better shadow map density
distribution

= Cached Shadow Maps use cached Shadow Matrices
= Distant cascades are updated less frequently
= | ast cascade uses VSM and blends additively with the shadow mask

= Allows to have large penumbras from huge distant objects

Point Light Shadows @SIGGRAPH2011

= We always split omni-directional lights into six independent projectors
= Shadow map for each projector is scaled separately

= Based on the shadow projection coverage

= Final scale is a result of
logarithmic shadow map density distribution function,
which uses the coverage as a parameter

= Big texture atlas to pack all shadow maps
each frame after scaling

= Texture atlas is allocated permanently to avoid
memory fragmentation

= Size on consoles: 1024x1024 (4 MB)
= Receiving area tagged by stencil

Shadow atlas

Soft Shadows Approximation @ SIGGRAPH2011

Soft Shadows Approximation

= \We use Poisson PCF taps with randomized rotations in shadow space

@ SIGGRAPH2011

= Adjusting the kernel size at runtime allows to have a good
approximation of soft shadows with variable penumbra

= Soft shadows idea: Estimate average distance ratio to shadow casters

= Similarto Percentage-Closer Soft Shadows [Randima2005]

Soft Shadows Approximation @suaampuzoﬁ

Basic Algorithm:

Cascade shadow maps need custom kernel scale adjustment
to handle transitions between cascades

Compute Shader option: fetch all taps to CS shared memory
and reuse them for both distance estimation and shadow computation

Poisson distributed taps are presorted by distance from the kernel center
Initial kernel radius set to match maximum range (= biggest/longest penumbra)
Use this kernel to estimate the average distance ratio
The number of samples is reduced proportionally to the avg. distance ratio
= This affects the radius of the kernel since the taps are sorted
Use only the reduced number of samples for final shadow computation

Shadows & Transparency @2 siacraprzon

= For alpha blended shadow receivers

= Forward passes to apply shadows
= For transparent shadow casters we accumulate the alpha
values of the casters

= Stored in 8-bit render target

Shadows & Transparency @snaampuzoﬁ

= Translucency map generation:

Depth testing using depth buffer from regular opaque shadow map to
avoid back projection/leaking

Alpha blended shadow generation pass to accumulate translucency alpha
(sorted back to front)

In case of cascaded shadow maps, generate translucency map for each
cascade

Shadow terms from shadow map and translucency map are both
combined during deferred shadow passes with max() operation

Shadows Video SIGGRAPH2011

Real Time Local Reflections @sneempuzon

Real Time Local Reflections @smamuzon

= Reflections are expensive with rasterization
= Usually planar reflections or cubemaps
= Require re-rendering of scene

= Standard reflections limited

= Either planar surface
= Tiny area for cube maps
= Usually no curved surfaces

= Reflections straightforward with raytracing
= Raytracing in screen space to approximate local reflections
= First iteration was demonstrated at GDC 09

Real Time Local Reflections (RLR) @smmneon

= Basic Algorithm

Compute reflection vector for each pixel
= Uses deferred normal and depth targets
Raymarch along reflection vector
Sample depth and check if ray depth is within threshold to scene depth
If hit, reproject into framebuffer of previous frame and sample color

= Results

Relatively cheap

Local reflections everywhere (even on complex surfaces)

Very cool where it works ©

Plenty of problematic cases due to limited data in screen space

= |mplementation Tips

= Very limited screen space data

= Rather no reflections than broken looking ones

= Smoothly fade out if reflection vector faces viewer as no data is available in
that case

= Smoothly fade out reflection samples at screen edges
= Add jittering to step size to hide noticeable step artifacts
= HDR color target sampled in Crysis 2
= Jitter or blur based on surface glossiness

Contact Shadows @SIGGRAPHZOH

= Core idea same as SSDO [Ritschel 2010]
= Modulate lighting with computed screen space occlusion
= Produces soft contact shadows
= Can also hide shadow bias issues
= Considerable quality gain over just SSAO
= However, directional occlusion info accessible in a
deferred way
= Fits better into existing lighting pipeline
= Can be applied efficiently to every light source

2 SIGGRAPH2011

N
£
o
©
©
=
7))
—
(S
©
+—
e
@)
@)

= Qcclusion info generation
= Compute and store bent normal N' during SSAO pass
= Bent normal is average unoccluded direction
= Requires clean SSAO without any self-occlusion and relatively wide
radius
= For each light
= Compute N dot L as usual
= Compute N' dot L

= Attenuate lighting by occlusion amount multiplied with clamped
difference between the two dot products

Deferred Skin Shading @sneempuzon

= Main Idea: Reuse diffuse lighting accumulation

= Proof of concept since beginning of project (early 2008)

= Subsurface scattering in screen space
= Gather lighting taps during geometry pass
= Used a Poisson distribution

= Best bits

= No additional memory requirements for atlas
= No redundant work

= Concept expandable to UV space [Borshukov 2001]

Head model courtesy of Infinite-Realities

= Cost proportional to screen area coverage

Screen Space Self-Shadowing @sueampuzon

= Couldn’t afford per-character shadow map (memory)
= How to workaround lack of memory on consoles ?

= Simple trick/approximation
= Ray march along screen space light vector
= Macro self-shadowing details for all characters, even on consoles

| —— A

Soft Alpha-Test @ SIGGRAPH2011

= Efficient hair rendering is a pain on this hardware generation

= Robust solutions:
= Alphatest looks very 1999. >= 4x SSAA ? Not yet for consumer HW
= ATOC doesn’t look so good and requires hardware MSAA
= Stippling + filtering ? Kind of works, but half res’ish look
= |dea: Post process for anti-aliasing the alpha test look
= Another oldie from beginning of project (early 2008)
= Directional blur (8 taps) along Tangent vector in Screen Space
= Visual hint for transparency and smooth hair look
= Additional Hair geometry pass

= Fur rendering? Directional blur along Normal vector in SS

{/2 SIGGRAPH2011

N
i

i

r\“\

¥ 4 b1 L ko
Soft Al ha Test Disabled "SC}

'ha Test Enabled

Batched HDR Post Processing @sneempuzon

Camera & Object Motion Blur @SIGGRAPHZOH

= Re-projection for static + velocity buffer for dynamic obj.
= Full resolution means at least ~3 ms spent (consoles)

Half resolution and RGBM encoded
= Total 16 x less BW versus full res and fat formats

= Composition mask for blending with full resolution
= QObject velocity buffer dilation [Sousa 2008] on the fly

All done in linear space before tone mapping
= Bright streaks are kept and propagated [Debevec 1998]

= Consoles: 9 taps; PCs higher specs: 24 taps

Camera & Objects V RT1:Composite Mask

Bokeh DOF: Another Kernel and w.i@IGGRAPIQOﬁ

Half-Res linear input (RGBM) RTO: Blurred Target (RGBM)

L Y

RT1:Composite Mask

Maximum m @SIGGRAPHZOH

= |t's just a blur we really want
= How to reuse all taps/bw, share all gpu work ?

= |dea: Offsets morphing based on blur type
= Camera/Objects moving? Directional versus disk kernel
= More uses: masked blur, radial blur, etc

= Final composite done directly in tone mapping pass

= 1 ms on consoles. Super fast on PC at 1080p
= Almost 10x faster than doing all posts individually (at fullres)

Ultra Specs: Motion Blur @sueemmaon

= Single pass at full screen resolution

= 12 taps + clamp maximum range to limit undersampling

= Alpha channel stores objects ID

Ultra Specs: Bokeh DOF @sueempuzoﬁ

= Go Bananas: Render a Quad/Sprite per pixel [Cyril 2005]
= GS to scale quads by CoC factor
= Accumulate results into Foreground/Background targets
= Masking by sorting quads per layers
= Alpha channel stores quad count
= Dithering to minimize precision loss
= Composite with final scene
= Divide layers result by layer alpha

= Great Quality ! (but very slow)

Ultra Specs: Bokeh DOF @sueempﬂzon

= Making it fast
= Render Half Res
= Reject Quads in interleaved pattern
= Early out for VS/PS
= Spherical aperture using ALU
= Future: avoid geometry shader usage

= Composite with final scene

= Back layer composited using
full resolution CoC

= Front layer is ok to bleed anyway

Ultra Specs Post Processes Video SIGGRAPH2011

m wuam @ SIGGRAPH2011

MIXIQUAD BASED
APBROAGH

WITH MOTION BLUR 2

S3D Image Generation €2 siccraprzon

@ SIGGRAPH2011

Standard approach: Render scene two times

= Great quality, pretty straightforward
= Problematic for GPU heavy games
= Often means half the framerate

= Would require heavy quality reduction for C2
= Resolution, LODs, view distance, effect quality/amount

Image space approach: Reprojection

= Reconstruct view/world space position of pixel and project into space of left/right eye
cameras

= Basically point splatting
= Scattering not efficiently possible on D3D9/10 GPUs
= Requires second hole filling pass

@ SIGGRAPH2011

= |mage offsetting in Pixel Shader

= Gather based approach
= For each pixel, compute disparity from depth buffer

= Sample backbuffer with positive/negative disparity as offset to generate
warped image (using bilinear filtering)
PN Disparity computed using Thales Theorem

Left Eye

’m7. Disparity: distance between projected positions of point in left/right views

MS !
'

MS: maximum separation (e.g. 3% of screen)
Right Eye ZPD: zero parallax plane distance

zpD
— Depth Disparity = MS * (1 — ZPD / Depth)

@ SIGGRAPH2011

= Algorithm samples backbuffer with offset

= [ssues due to missing data in main view

= Problem: Occlusion
= Background should be sampled but foreground object is in image
= Easy to find by checking for closer depth, replicate background instead
= Qur solution: Find minimum depth and use it for computing disparity
= Small depth means small offset as well
= Adds some randomization to the replication

S3D Image Generation: Shader Sampl€J sconserzor

const float samples([3] = { 0.5, 0.66, 1 };
float minDepthL = 1.0, minDepthR = 1.0;
float2 uv = 0;

for(int 1 = 0; 1 < 3; ++1i) {

uv.x = samples[i] * MaxSeparation;

minDepthL min (minDepthlL, GetDepth(baseUV + uv));

minDepthR min(minDepthR, GetDepth(baseUV - uv));

float parallaxlL = MaxSeparation * (1 - ZPD / minDepthL);

float parallaxR = MaxSeparation * (1 - ZPD / minDepthR);

left = tex2D(backBuf, baseUV + float2(parallaxL, 0));
right = tex2D(backBuf, baseUV - float2(parallaxR, 0));

@ SIGGRAPH2011

Simple and very efficient, about 1 ms on consoles

= Works with standard stereo parameters, negative and positive parallax
= Qverall results very similar to rendering two times

Does not handle disocclusion

= Works well enough for scenes with sparse silhouettes (e.g. city scene with huge buildings) and
carefully chosen stereo parameters

= More problematic for very close objects like FP weapon
= Huger area with missing information

= See slight halos around objects (replicated background)

Does not work for transparent objects (not in depth buffer)

= They get separation of background (somehow acceptable if overall scene depth is limited)

Left/right screen edges need special consideration

= For example cropping image

= Conclusion

= Technique is far from being perfect
= Many potential issues
= Good amount of tweaking required

= Very well received for Crysis 2, especially on consoles
= No loss of visual fidelity in s3D

= Can be an option if you can live with some artifacts and limited
depth range

@ SIGGRAPH2011

= Respecting some rules is essential to create a
comfortable experience

= Everything goes into the screen in Crysis 2
= No window violation possible
= No extreme refocusing required
= Avoiding depth conflicts
= Perceived 3D depth does not match rendering
= E.g. crosshair is deeper than wall but rendered in front of it
= Very annoying, causes unpleasant side effects for viewers

@ SIGGRAPH2011

= 3D HUD

= Core elements placed carefully in 3D space to avoid intersections
with world

= Crosshair
= Pushed into the world to be in front of player
= Can often cause depth conflicts
= Cast ray into world, check for intersection
= Adapt position smoothly in case of intersection

@ SIGGRAPH2011

= Certain ZPD required to get acceptable parallax
distribution

Problematic for FPS games
Weapon would come out of screen

= Solution

Weapon pushed into screen during stereo image generation
However, can cause depth conflicts when close to wall

To avoid this, check for close objects and reduce ZPD to fade out
stereo effect smoothly

@ SIGGRAPH2011

= 3.5 years < immense amount of work

= We only covered here a very small sub-set ©

= Whats next for CryENGINE ?

= Bigger, better, faster. Avatar Quality in Realtime ?

= Not that crazy, with properly done assets for realtime
= We need faster consoles for a BIG “next gen” step:

= Big = huge visual step, as in Far Cry to Crysis 1

= |nsane amount of GPU Power (4x NV 590) ©

= |nsane amount of memory (>= 8 GB)

w Thanks @ SIGGRAPH2011

= Vaclav Kyba, Michael Kopietz, Carsten Wenzel,
Vladimir Kajalin, Andrey Konich, Anton Knyazyev,
lvo Zoltan Frey, Ivo Herzeg

= Marco Corbetta, Christopher Evans, Chris Auty

= Magnus Larbrant, Pierre-lves Donzallaz, Chris North
= Natalya Tatarchuk

= And to the entire Crytek Team

. Gritz, L. “The Importance of Being Linear”, 2008

= Debevec, P. “Recovering High Dynamic Range Radiance Maps from Photographs”, 1998
- Tchou, C. “HDR The Bungie Way”, 2008

. Vlachos, A. “Post Processing in The Orange Box”, 2008

. Cook, D. “Xbox Textures — Formats, Conversion, Fetching and Performance”, 2008

= Valient, M. “The Rendering Technology of Killzone 2, 2008

= Kaplanyan, A. “Real-time Diffuse Global lllumination in CryENGINE 3”, 2009

= Sousa, T. “Crysis Next Gen Effects”, 2008

Ll Reinhard, E. et al. “High Dynamic Range Imaging”, 2010

Ll Hoffman, N. et al. “Physically-Based Shading Models in Film and Game Production”, 2010
= Sousa, T. “CryENGINE 3 Rendering Techniques”, 2011

- Grosch T. and Ritschel T. “Screen-Space Directional Occlusion”. GPU Pro, 2010

. Randima, F “Percentage Closer Soft-Shadows”, 2005

. Krassnigg, J “A Deferred Decal Rendering Technique”, Game Engine Gems 1, 2011

= Cyril, P. et al.”Photographic Depth of Field Rendering”, 2005

= Borshukov, G. and Lewis, J.P “Realistic Human Face Rendering for “The Matrix Reloaded”, 2001

Tiago@crytek.com / Twitter: Crytek _Tiago

Nicolas@crytek.com

Nick@crytek.com

mailto:Tiago@crytek.com
mailto:Nicolas@crytek.com
mailto:Nick@crytek.com

Bonus Slides

HDR & Linear Correctness @sueamuzoﬂ

" HDR [Reinhard 2010] = | inear Correctness [Gritz 2008]
= Precision, range = All computations in exact same
= Physically based post processing Space

float
//all
float
float
float
float
float

Vec3 vStereoShift = camMatrix.GetColumnO () .GetNormalized () * cam.GetAsymL () ;

fProjectionRatio = fViewWidth/fViewHeight; // projection ratio

values are in camera space

fFar = cam.GetFarPlane();

fNear = cam.GetNearPlane();

fWorldHeightDiv2 = fNear * cry tanf (cam.GetFov()*0.5f);
fWorldWidthDiv2 = fWorldHeightDiv2 * fProjectionRatio;
k = fFar/fNear;

//apply matrix orientation

Vec3 vZ = (camMatrix.GetColumnl () * fNear + vStereoShift)* k; // size of vZ is the distance from

to near plane
Vec3 vX = camMatrix.GetColumnO () * fWorldwWidthDiv2 * k;
Vec3 vY = camMatrix.GetColumn2 () * fWorldHeightDiv2 * k;

vZ =
vX *=
vZ =

vY *=

vZ - vX;

(2.0f/fViewWidth) ;

vZ + vY;

-(2.0f/fViewHeight) ;

//Transform basis to any local space (shadow space here)
viWBasisX = mShadowTexGen * Vecd (vX, 0.0f);

vWBasisY = mShadowTexGen * Vec4d

vy, 0.0f);

(
vWBasisZ = mShadowTexGen * Vec4d (vZ, 0.0f);
(

vCamPos = mShadowTexGen * Vec4d

cam.GetPosition(), 1.0f);

camera pos

Shadow Acne &

= Two main reasons

= Low shadow map texel density

SIGGRAPH2011

‘é

= Precision of depth buffers

= Different scenarios to overcome acne

= Sun shadows: front faces rendered with slope-
scaled depth bias

= Point light shadows: back face rendering, works
better for indoors scenes

= Variance shadows for distant LODs - render both
faces to shadow maps

= Constant depth bias during deferred
shadow passes to overcome depth buffer
precision

@ SIGGRAPH2011

= Can’t afford each light casting shadows on consoles
= Clip Boxes / Volumes

Tool for lighting artists to eliminate light bleeding using stencil culling

Each deferred light doesn’t need to have fully generated shadow
maps

Artist can create arbitrary convex volumes or use default primitives

Deferred Decals @ SIGGRAPH2011

= Forward Decals have quite some issues

= Additional memory, mesh re-allocations causing memory fragmentation,
CPU time for dynamic mesh creation, etc

= Deferred decals to the rescue! [14]
= Rendered as a decal box volume, very similar to deferred lights
= Separate diffuse layer + normal map buffer blending
= Fetching diffuse texture and computing attenuation for shading
= No lighting/shading computed here
= Applied to static geometry only

\J

-~

¢ SIGGRAPH2011

‘Y

Initial scene Decals diffuse layer

Road Decals Final scene

Deferred Decals ’/2 SIGGRAPH2011

= Problems

= |n case decals have normal maps results in tangent space mismatch with
the regular decals

= [eaking of deferred decals

Deferred Decals @ SIGGRAPH2011

= Solutions for leaking

= Adjustable decal volume and
decal attenuation function

= Dot product between Scene Normals and Decal Tangent Space
Normal

= Problematic if decal uses normal maps itself

= X360: render to EDRAM and always have separate copy in
the resolved Scene Normals texture

= PS3 : render target read/write during convex volume’s
rasterization

