

Secrets of CryENGINE 3 Graphics Technology

Contents:

Rendering Pipeline

Position Reconstruction

Coverage Buffer

Deferred Lighting

Shadows

Screen Space Techniques

Deferred Techniques

Batched HDR Post Processing

Stereo Rendering

Secrets of CryENGINE 3 Graphics Technology

Nickolay Kasyan Nicolas Schulz Tiago Sousa
Senior Graphics Engineer Senior Graphics Engineer Principal Graphics Engineer

Crytek

 Linear Correct HDR Rendering [Gritz 2008] [Reinhard 2010]

 Minimal G-Buffer: Depth and Normals

 Opaque, decals, def. decals,terrain layers

 Deferred Lighting

 Ambient, env. lighting probes

 GI, SSDO, RLR, Lights

 Physically based shading

 Opaque / Transparent passes

 HDR / LDR Posts

Physically Based Rendering

 Slim G-Buffer

 A8B8G8R8 World Space BF Normals + Glossiness

 Readback D24S8 Depth + Stencil bits for tagging indoor surfaces

 2x A2B10G10R10F_EDRAM for Diffuse and Specular buffers

 X360: Resolved to A2B10G10R10 [Cook 2008]

 PS3: 2x A8B8G8R8 encoded in RGBM

 Encoding <=> No HW blending possible. Workaround: r/w from dst RT

 PC: 2x A16B16G16R16F (most general format)

 A2B10G10R10F_EDRAM for scene target

 PS3: A8B8G8R8 RGBM encoded for opaque, FP16 for transparents

 PC: A16B16G16R16F

G-Buffer/L-Buffers/Scene Targets

 Hyperbolic distribution
 Needs conversion to linear space before using in shaders

Problem: First person view objects
 Depth buffer is used to prevent overlapping FPV objects with the rest

of the scene

 Different FOV and near/far plane (art specific choice)

 Different depth range to prevent actual overlapping

 => Deferred techniques don’t work 100% for such objects

Z-Buffer Depth Caveats

//Constants

g_ProjRatio.xy = float2(zfar / (zfar-znear), znear / (znear-zfar));

//HLSL function

float GetLinearDepth(float fDevDepth)

{ return g_ProjRatio.y/(fDevDepth-g_ProjRatio.x);}

 Our final solution:

 Modifying depth reconstruction function

 Convert hardware depth to linear one

 Different depth scale for first person view object

 Selecting based on depth

Addressing First Person View Objects

float GetLinearDepth(float fDevDepth) {

 float bNearDepth = step(fDevDepth, g_PS_DepthRangeThreshold);

 float2 ProjRatio.xy = lerp(g_PS_ProjRatio.xy, g_PS_NearestScaled.xy, bNearDepth);

 return ProjRatio.y/(fDevDepth-ProjRatio.x);

}

 Idea: linearly transform VPOS from screen space S directly to

target homogeneous space W (shadow space or world space)

 Direct transformation from screen

clip space to homogeneous matrix

 VPOS is simplest way to render

 deferred light volumes

 Separate adjustment for s3D

Reconstructing Position from Depth

Geometrical Meaning of Reconstruction

X = vStoWBasisX

Y = vStoWBasisY

Z = vStoWBasisZ

float4 HPos = (vStoWBasisZ + (vStoWBasisX*VPos.x)+(vStoWBasisY*VPos.y)) *

fSceneDepth;

HPos += vCamPos.xyzw;

Coverage Buffer

 Mostly outdoors for Crysis2

 Approximately 70%

 Portals or PVS not efficient there

 Coverage Buffer as main occlusion culling system

 Essentially low resolution depth buffer

 Coarse CPU rasterization of object AABBs/OBBs for visibility z-
tests

 Too slow to prepare fully detailed C-Buffer on CPU

 Huge computation cost

 Full rendering pipeline has to be duplicated in software to obtain
all details for C-Buffer

Coverage Buffer

 Read-back of previous frame’s GPU depth buffer on CPU

 Downscaling ZBuffer on GPU (max filter) after G-Buffer pass

 Culling done by rasterizing BBoxes in a separate CPU thread

Original: 1920x1080

Downscaled: 256x128

Coverage Buffer

 Used on X360/PS3 and DX11 HW

 Consoles perfect for this (1 frame latency)

 Read-back latency on PC is higher but still acceptable (up to 4 frames)

 C-Buffer size limited to 256x128 in Crysis 2 on consoles

 Problem: Mismatch between previous/current frame

cameras

 Results in wrong visibility tests

Coverage Buffer Reprojection

 Ended up using C-Buffer CPU reprojection from prev. frame camera

 Point splatting of reprojected fragments

 Camera info is encoded into the c-buffer data

 CPU readback and reprojection in separate thread

 ~2ms on SPU, ~3-4ms on Xbox 360 with vectorized code

 Stitching of holes inside C-Buffer after reprojection

 3x3 dilation pass

 Remaining C-Buffer holes: we assume objects are visible

 Reprojection improved culling efficiency greatly

 Solved all kind of occlusion test artifacts, detected invalid areas

 Works more efficiently with higher framerate Remaining C-Buffer holes

 after reprojection

 Outdoor / Indoor

 Stencil tagged regions in G-Buffer passes

 FS Quad and indoor volume BBox

 Additive blended

Deferred Lighting: Ambient

 Accurate diffuse lighting and specular lighting

 Artist pick important sampling locations

 HDR encoded (RGBM)

 Linear blending for diffuse and specular cube map

 Spherical light volume

 G-Buffer material glossiness used for picking mip level

 Consistent specular behaviour between IBL and regular lights

 Alpha blended passes? Pick nearest probe

Deferred Lighting: Environment Probes

Deferred Lighting: Environment Probes

 Add GI [Kaplanyan 2010] (add blend)

 Apply SSDO (mul blend) and RLR (alpha blend)

 Add light sources

 Lights rendering depends on screen coverage heuristics

 FS quads with stencil volumes pre-passes, convex light volumes

or 2D quads

 Normalized Blinn-Phong [Hoffman 2010]

 For C2, only projectors and point lights

 Limited shadow casters count on consoles - go bananas on PC

Deferred Lighting: GI, SSDO, RLR, Lights

Shadows

 Shadow mask for sun

 Special render target to accumulate shadow occlusion

 Shadow mask combines multiple shadowing technique on top on

each other before using with actual shading

 Point light shadows rendered directly to the light buffer

Deferred Shadows

10+ shadow casting lights Sun shadow mask

Cascaded Shadows Maps

 Cascaded shadow maps used since Crysis 1

 Cascades Splitting Scheme

 Approximate Logarithmic texel density distribution

 Shadow frustums adjusted to cover camera view

frustum conservatively

 Orientation for shadow frustums is fixed in world space

 More cascades allow

 Improved texel density, reduced acne and improved self-shadowing for wider shadow

range due to better approximation of the logarithmical distribution

• For each cascade snap the shadow frustum to the SM’s texel grid

 Shadow passes for cascades/point lights rendered in deferred way

 Potential shadow receiving areas tagged in stencil buffer by rendering

frustum volumes

 Allows to have more sophisticated splitting into cascade

 Pick a cascade with the highest resolution in overlapping regions

 Avoids wasting of shadow map space

Deferred Shadow Passes

 Not all the cascades are updated during a single frame

 Update cost distributed across several frames

 Performance reasons (PS3 particularly)

 Allows us to have more cascades – better shadow map density

distribution

 Cached Shadow Maps use cached Shadow Matrices

 Distant cascades are updated less frequently

 Last cascade uses VSM and blends additively with the shadow mask

 Allows to have large penumbras from huge distant objects

Shadow Cascades Caching

 We always split omni-directional lights into six independent projectors

 Shadow map for each projector is scaled separately

 Based on the shadow projection coverage

 Final scale is a result of

logarithmic shadow map density distribution function,

which uses the coverage as a parameter

 Big texture atlas to pack all shadow maps

each frame after scaling

 Texture atlas is allocated permanently to avoid

memory fragmentation

 Size on consoles: 1024x1024 (4 MB)

 Receiving area tagged by stencil

Point Light Shadows

Shadow atlas

Soft Shadows Approximation

Soft Shadows Approximation

 We use Poisson PCF taps with randomized rotations in shadow space

 Adjusting the kernel size at runtime allows to have a good

approximation of soft shadows with variable penumbra

 Soft shadows idea: Estimate average distance ratio to shadow casters

 Similar to Percentage-Closer Soft Shadows [Randima2005]

 Basic Algorithm:

 Poisson distributed taps are presorted by distance from the kernel center

 Initial kernel radius set to match maximum range (= biggest/longest penumbra)

 Use this kernel to estimate the average distance ratio

 The number of samples is reduced proportionally to the avg. distance ratio

 This affects the radius of the kernel since the taps are sorted

 Use only the reduced number of samples for final shadow computation

 Cascade shadow maps need custom kernel scale adjustment

to handle transitions between cascades

 Compute Shader option: fetch all taps to CS shared memory

and reuse them for both distance estimation and shadow computation

Soft Shadows Approximation

 For alpha blended shadow receivers

 Forward passes to apply shadows

 For transparent shadow casters we accumulate the alpha

values of the casters

 Stored in 8-bit render target

Shadows & Transparency

 Translucency map generation:

 Depth testing using depth buffer from regular opaque shadow map to

avoid back projection/leaking

 Alpha blended shadow generation pass to accumulate translucency alpha

(sorted back to front)

 In case of cascaded shadow maps, generate translucency map for each

cascade

 Shadow terms from shadow map and translucency map are both

combined during deferred shadow passes with max() operation

Shadows & Transparency

Shadows Video

Real Time Local Reflections

 Reflections are expensive with rasterization

 Usually planar reflections or cubemaps

 Require re-rendering of scene

 Standard reflections limited

 Either planar surface

 Tiny area for cube maps

 Usually no curved surfaces

 Reflections straightforward with raytracing

 Raytracing in screen space to approximate local reflections

 First iteration was demonstrated at GDC 09

Real Time Local Reflections

 Basic Algorithm

 Compute reflection vector for each pixel

 Uses deferred normal and depth targets

 Raymarch along reflection vector

 Sample depth and check if ray depth is within threshold to scene depth

 If hit, reproject into framebuffer of previous frame and sample color

 Results

 Relatively cheap

 Local reflections everywhere (even on complex surfaces)

 Very cool where it works 

 Plenty of problematic cases due to limited data in screen space

Real Time Local Reflections (RLR)

 Implementation Tips

 Very limited screen space data

 Rather no reflections than broken looking ones

 Smoothly fade out if reflection vector faces viewer as no data is available in

that case

 Smoothly fade out reflection samples at screen edges

 Add jittering to step size to hide noticeable step artifacts

 HDR color target sampled in Crysis 2

 Jitter or blur based on surface glossiness

Real Time Local Reflections (RLR)

 Core idea same as SSDO [Ritschel 2010]

 Modulate lighting with computed screen space occlusion

 Produces soft contact shadows

 Can also hide shadow bias issues

 Considerable quality gain over just SSAO

 However, directional occlusion info accessible in a

deferred way

 Fits better into existing lighting pipeline

 Can be applied efficiently to every light source

Contact Shadows

Contact Shadows

 Occlusion info generation

 Compute and store bent normal N' during SSAO pass

 Bent normal is average unoccluded direction

 Requires clean SSAO without any self-occlusion and relatively wide

radius

 For each light

 Compute N dot L as usual

 Compute N' dot L

 Attenuate lighting by occlusion amount multiplied with clamped

difference between the two dot products

Contact Shadows

 Main Idea: Reuse diffuse lighting accumulation

 Proof of concept since beginning of project (early 2008)

 Subsurface scattering in screen space

 Gather lighting taps during geometry pass

 Used a Poisson distribution

 Best bits

 No additional memory requirements for atlas

 No redundant work

 Concept expandable to UV space [Borshukov 2001]

 Cost proportional to screen area coverage
Head model courtesy of Infinite-Realities

Deferred Skin Shading

 Couldn’t afford per-character shadow map (memory)

 How to workaround lack of memory on consoles ?

 Simple trick/approximation

 Ray march along screen space light vector

 Macro self-shadowing details for all characters, even on consoles

Screen Space Self-Shadowing

 Efficient hair rendering is a pain on this hardware generation

 Robust solutions:

 Alpha test looks very 1999. >= 4x SSAA ? Not yet for consumer HW

 ATOC doesn’t look so good and requires hardware MSAA

 Stippling + filtering ? Kind of works, but half res’ish look

 Idea: Post process for anti-aliasing the alpha test look

 Another oldie from beginning of project (early 2008)

 Directional blur (8 taps) along Tangent vector in Screen Space

 Visual hint for transparency and smooth hair look

 Additional Hair geometry pass

 Fur rendering? Directional blur along Normal vector in SS

Soft Alpha-Test

Soft Alpha-Test

Batched HDR Post Processing

 Re-projection for static + velocity buffer for dynamic obj.

 Full resolution means at least ~3 ms spent (consoles)

 Half resolution and RGBM encoded

 Total 16 x less BW versus full res and fat formats

 Composition mask for blending with full resolution

 Object velocity buffer dilation [Sousa 2008] on the fly

 All done in linear space before tone mapping

 Bright streaks are kept and propagated [Debevec 1998]

 Consoles: 9 taps; PCs higher specs: 24 taps

Camera & Object Motion Blur

Camera & Objects V RT1:Composite Mask

Camera & Object Motion Blur

RT0: Blurred Target (RGBM) Half-Res linear input (RGBM)

CoC

Half-Res linear input (RGBM)

RT1:Composite Mask

RT0: Blurred Target (RGBM)

Bokeh DOF: Another Kernel and Weights

 It’s just a blur we really want

 How to reuse all taps/bw, share all gpu work ?

 Idea: Offsets morphing based on blur type

 Camera/Objects moving? Directional versus disk kernel

 More uses: masked blur, radial blur, etc

 Final composite done directly in tone mapping pass

 1 ms on consoles. Super fast on PC at 1080p

 Almost 10x faster than doing all posts individually (at fullres)

Maximum Batching

 Single pass at full screen resolution

 12 taps + clamp maximum range to limit undersampling

 Alpha channel stores objects ID

 Blur masking scheme based on velocity and ID

 ||V|| > threshold ? Allow bleeding, else reject tap

 Early out if ||V|| < threshold

Ultra Specs: Motion Blur

 Go Bananas: Render a Quad/Sprite per pixel [Cyril 2005]

 GS to scale quads by CoC factor

 Accumulate results into Foreground/Background targets

 Masking by sorting quads per layers

 Alpha channel stores quad count

 Dithering to minimize precision loss

 Composite with final scene

 Divide layers result by layer alpha

 Great Quality ! (but very slow)

Ultra Specs: Bokeh DOF

 Making it fast

 Render Half Res

 Reject Quads in interleaved pattern

 Early out for VS/PS

 Spherical aperture using ALU

 Future: avoid geometry shader usage

 Composite with final scene

 Back layer composited using

full resolution CoC

 Front layer is ok to bleed anyway

Ultra Specs: Bokeh DOF

Ultra Specs Post Processes Video

What if…

S3D Image Generation

 Standard approach: Render scene two times

 Great quality, pretty straightforward

 Problematic for GPU heavy games

 Often means half the framerate

 Would require heavy quality reduction for C2

 Resolution, LODs, view distance, effect quality/amount

 Image space approach: Reprojection

 Reconstruct view/world space position of pixel and project into space of left/right eye

cameras

 Basically point splatting

 Scattering not efficiently possible on D3D9/10 GPUs

 Requires second hole filling pass

S3D Image Generation

 Image offsetting in Pixel Shader

 Gather based approach

 For each pixel, compute disparity from depth buffer

 Sample backbuffer with positive/negative disparity as offset to generate

warped image (using bilinear filtering)

S3D Image Generation

Disparity computed using Thales Theorem

Disparity: distance between projected positions of point in left/right views

MS: maximum separation (e.g. 3% of screen)

ZPD: zero parallax plane distance

Disparity = MS * (1 – ZPD / Depth)

 Algorithm samples backbuffer with offset

 Issues due to missing data in main view

 Problem: Occlusion

 Background should be sampled but foreground object is in image

 Easy to find by checking for closer depth, replicate background instead

 Our solution: Find minimum depth and use it for computing disparity

 Small depth means small offset as well

 Adds some randomization to the replication

S3D Image Generation

const float samples[3] = { 0.5, 0.66, 1 };

float minDepthL = 1.0, minDepthR = 1.0;

float2 uv = 0;

for(int i = 0; i < 3; ++i) {

 uv.x = samples[i] * MaxSeparation;

 minDepthL = min(minDepthL, GetDepth(baseUV + uv));

 minDepthR = min(minDepthR, GetDepth(baseUV - uv));

}

float parallaxL = MaxSeparation * (1 – ZPD / minDepthL);

float parallaxR = MaxSeparation * (1 – ZPD / minDepthR);

left = tex2D(backBuf, baseUV + float2(parallaxL, 0));

right = tex2D(backBuf, baseUV - float2(parallaxR, 0));

S3D Image Generation: Shader Sample

 Simple and very efficient, about 1 ms on consoles

 Works with standard stereo parameters, negative and positive parallax

 Overall results very similar to rendering two times

 Does not handle disocclusion

 Works well enough for scenes with sparse silhouettes (e.g. city scene with huge buildings) and

carefully chosen stereo parameters

 More problematic for very close objects like FP weapon

 Huger area with missing information

 See slight halos around objects (replicated background)

 Does not work for transparent objects (not in depth buffer)

 They get separation of background (somehow acceptable if overall scene depth is limited)

 Left/right screen edges need special consideration

 For example cropping image

S3D Image Generation

 Conclusion

 Technique is far from being perfect

 Many potential issues

 Good amount of tweaking required

 Very well received for Crysis 2, especially on consoles

 No loss of visual fidelity in s3D

 Can be an option if you can live with some artifacts and limited

depth range

S3D Image Generation

 Respecting some rules is essential to create a

comfortable experience

 Everything goes into the screen in Crysis 2

 No window violation possible

 No extreme refocusing required

 Avoiding depth conflicts

 Perceived 3D depth does not match rendering

 E.g. crosshair is deeper than wall but rendered in front of it

 Very annoying, causes unpleasant side effects for viewers

S3D Image Generation

 3D HUD

 Core elements placed carefully in 3D space to avoid intersections

with world

 Crosshair

 Pushed into the world to be in front of player

 Can often cause depth conflicts

 Cast ray into world, check for intersection

 Adapt position smoothly in case of intersection

S3D Image Generation

 Certain ZPD required to get acceptable parallax

distribution

 Problematic for FPS games

 Weapon would come out of screen

 Solution

 Weapon pushed into screen during stereo image generation

 However, can cause depth conflicts when close to wall

 To avoid this, check for close objects and reduce ZPD to fade out

stereo effect smoothly

S3D Image Generation

 3.5 years  immense amount of work

 We only covered here a very small sub-set 

 Whats next for CryENGINE ?

 Bigger, better, faster. Avatar Quality in Realtime ?

 Not that crazy, with properly done assets for realtime

 We need faster consoles for a BIG “next gen” step:

 Big = huge visual step, as in Far Cry to Crysis 1

 Insane amount of GPU Power (4x NV 590) 

 Insane amount of memory (>= 8 GB)

Conclusion

 Vaclav Kyba, Michael Kopietz, Carsten Wenzel,

Vladimir Kajalin, Andrey Konich, Anton Knyazyev,

Ivo Zoltan Frey, Ivo Herzeg

 Marco Corbetta, Christopher Evans, Chris Auty

 Magnus Larbrant, Pierre-Ives Donzallaz, Chris North

 Natalya Tatarchuk

 And to the entire Crytek Team

Special Thanks

 Gritz, L. “The Importance of Being Linear”, 2008

 Debevec, P. “Recovering High Dynamic Range Radiance Maps from Photographs”, 1998

 Tchou, C. “HDR The Bungie Way”, 2008

 Vlachos, A. “Post Processing in The Orange Box”, 2008

 Cook, D. “Xbox Textures – Formats, Conversion, Fetching and Performance”, 2008

 Valient, M. “The Rendering Technology of Killzone 2“, 2008

 Kaplanyan, A. “Real-time Diffuse Global Illumination in CryENGINE 3”, 2009

 Sousa, T. “Crysis Next Gen Effects”, 2008

 Reinhard, E. et al. “High Dynamic Range Imaging” , 2010

 Hoffman, N. et al. “Physically-Based Shading Models in Film and Game Production”, 2010

 Sousa, T. “CryENGINE 3 Rendering Techniques”, 2011

 Grosch T. and Ritschel T. “Screen-Space Directional Occlusion”. GPU Pro, 2010

 Randima, F “Percentage Closer Soft-Shadows”, 2005

 Krassnigg, J “A Deferred Decal Rendering Technique”, Game Engine Gems 1, 2011

 Cyril, P. et al.”Photographic Depth of Field Rendering”, 2005

 Borshukov, G. and Lewis, J.P “Realistic Human Face Rendering for “The Matrix Reloaded””, 2001

References

Tiago@crytek.com / Twitter: Crytek_Tiago

Nicolas@crytek.com

Nick@crytek.com

Questions

mailto:Tiago@crytek.com
mailto:Nicolas@crytek.com
mailto:Nick@crytek.com

Bonus Slides

 HDR [Reinhard 2010]

 Precision, range

 Physically based post processing

 Linear Correctness [Gritz 2008]

 All computations in exact same

space

HDR & Linear Correctness

Computing VPOS warp basis

float fProjectionRatio = fViewWidth/fViewHeight; // projection ratio

//all values are in camera space

float fFar = cam.GetFarPlane();

float fNear = cam.GetNearPlane();

float fWorldHeightDiv2 = fNear * cry_tanf(cam.GetFov()*0.5f);

float fWorldWidthDiv2 = fWorldHeightDiv2 * fProjectionRatio;

float k = fFar/fNear;

Vec3 vStereoShift = camMatrix.GetColumn0().GetNormalized() * cam.GetAsymL();

//apply matrix orientation

Vec3 vZ = (camMatrix.GetColumn1() * fNear + vStereoShift)* k; // size of vZ is the distance from camera pos

to near plane

Vec3 vX = camMatrix.GetColumn0() * fWorldWidthDiv2 * k;

Vec3 vY = camMatrix.GetColumn2() * fWorldHeightDiv2 * k;

vZ = vZ - vX;

vX *= (2.0f/fViewWidth);

vZ = vZ + vY;

vY *= -(2.0f/fViewHeight);

//Transform basis to any local space (shadow space here)

vWBasisX = mShadowTexGen * Vec4 (vX, 0.0f);

vWBasisY = mShadowTexGen * Vec4 (vY, 0.0f);

vWBasisZ = mShadowTexGen * Vec4 (vZ, 0.0f);

vCamPos = mShadowTexGen * Vec4 (cam.GetPosition(), 1.0f);

Geometrical Meaning of Reconstruction

 Two main reasons

 Low shadow map texel density

 Precision of depth buffers

 Different scenarios to overcome acne

 Sun shadows: front faces rendered with slope-

scaled depth bias

 Point light shadows: back face rendering, works

better for indoors scenes

 Variance shadows for distant LODs - render both

faces to shadow maps

 Constant depth bias during deferred

shadow passes to overcome depth buffer

precision

Shadow Acne

 Can’t afford each light casting shadows on consoles

 Clip Boxes / Volumes

 Tool for lighting artists to eliminate light bleeding using stencil culling

 Each deferred light doesn’t need to have fully generated shadow

maps

 Artist can create arbitrary convex volumes or use default primitives

Minimizing Light Bleeding

 Forward Decals have quite some issues

 Additional memory, mesh re-allocations causing memory fragmentation,

CPU time for dynamic mesh creation, etc

 Deferred decals to the rescue! [14]

 Rendered as a decal box volume, very similar to deferred lights

 Separate diffuse layer + normal map buffer blending

 Fetching diffuse texture and computing attenuation for shading

 No lighting/shading computed here

 Applied to static geometry only

Deferred Decals

Deferred Decals

Initial scene Decals diffuse layer

Road Decals Final scene

 Problems

 In case decals have normal maps results in tangent space mismatch with

the regular decals

 Leaking of deferred decals

Deferred Decals

 Solutions for leaking

 Adjustable decal volume and

decal attenuation function

 Dot product between Scene Normals and Decal Tangent Space

Normal

 Problematic if decal uses normal maps itself

 X360: render to EDRAM and always have separate copy in

the resolved Scene Normals texture

 PS3 : render target read/write during convex volume’s

rasterization

Deferred Decals

