

Secrets of CryENGINE 3 Graphics Technology

Contents:

Rendering Pipeline

Position Reconstruction

Coverage Buffer

Deferred Lighting

Shadows

Screen Space Techniques

Deferred Techniques

Batched HDR Post Processing

Stereo Rendering

Secrets of CryENGINE 3 Graphics Technology

Nickolay Kasyan Nicolas Schulz Tiago Sousa
Senior Graphics Engineer Senior Graphics Engineer Principal Graphics Engineer

Crytek

 Linear Correct HDR Rendering [Gritz 2008] [Reinhard 2010]

 Minimal G-Buffer: Depth and Normals

 Opaque, decals, def. decals,terrain layers

 Deferred Lighting

 Ambient, env. lighting probes

 GI, SSDO, RLR, Lights

 Physically based shading

 Opaque / Transparent passes

 HDR / LDR Posts

Physically Based Rendering

 Slim G-Buffer

 A8B8G8R8 World Space BF Normals + Glossiness

 Readback D24S8 Depth + Stencil bits for tagging indoor surfaces

 2x A2B10G10R10F_EDRAM for Diffuse and Specular buffers

 X360: Resolved to A2B10G10R10 [Cook 2008]

 PS3: 2x A8B8G8R8 encoded in RGBM

 Encoding <=> No HW blending possible. Workaround: r/w from dst RT

 PC: 2x A16B16G16R16F (most general format)

 A2B10G10R10F_EDRAM for scene target

 PS3: A8B8G8R8 RGBM encoded for opaque, FP16 for transparents

 PC: A16B16G16R16F

G-Buffer/L-Buffers/Scene Targets

 Hyperbolic distribution
 Needs conversion to linear space before using in shaders

Problem: First person view objects
 Depth buffer is used to prevent overlapping FPV objects with the rest

of the scene

 Different FOV and near/far plane (art specific choice)

 Different depth range to prevent actual overlapping

 => Deferred techniques don’t work 100% for such objects

Z-Buffer Depth Caveats

//Constants

g_ProjRatio.xy = float2(zfar / (zfar-znear), znear / (znear-zfar));

//HLSL function

float GetLinearDepth(float fDevDepth)

{ return g_ProjRatio.y/(fDevDepth-g_ProjRatio.x);}

 Our final solution:

 Modifying depth reconstruction function

 Convert hardware depth to linear one

 Different depth scale for first person view object

 Selecting based on depth

Addressing First Person View Objects

float GetLinearDepth(float fDevDepth) {

 float bNearDepth = step(fDevDepth, g_PS_DepthRangeThreshold);

 float2 ProjRatio.xy = lerp(g_PS_ProjRatio.xy, g_PS_NearestScaled.xy, bNearDepth);

 return ProjRatio.y/(fDevDepth-ProjRatio.x);

}

 Idea: linearly transform VPOS from screen space S directly to

target homogeneous space W (shadow space or world space)

 Direct transformation from screen

clip space to homogeneous matrix

 VPOS is simplest way to render

 deferred light volumes

 Separate adjustment for s3D

Reconstructing Position from Depth

Geometrical Meaning of Reconstruction

X = vStoWBasisX

Y = vStoWBasisY

Z = vStoWBasisZ

float4 HPos = (vStoWBasisZ + (vStoWBasisX*VPos.x)+(vStoWBasisY*VPos.y)) *

fSceneDepth;

HPos += vCamPos.xyzw;

Coverage Buffer

 Mostly outdoors for Crysis2

 Approximately 70%

 Portals or PVS not efficient there

 Coverage Buffer as main occlusion culling system

 Essentially low resolution depth buffer

 Coarse CPU rasterization of object AABBs/OBBs for visibility z-
tests

 Too slow to prepare fully detailed C-Buffer on CPU

 Huge computation cost

 Full rendering pipeline has to be duplicated in software to obtain
all details for C-Buffer

Coverage Buffer

 Read-back of previous frame’s GPU depth buffer on CPU

 Downscaling ZBuffer on GPU (max filter) after G-Buffer pass

 Culling done by rasterizing BBoxes in a separate CPU thread

Original: 1920x1080

Downscaled: 256x128

Coverage Buffer

 Used on X360/PS3 and DX11 HW

 Consoles perfect for this (1 frame latency)

 Read-back latency on PC is higher but still acceptable (up to 4 frames)

 C-Buffer size limited to 256x128 in Crysis 2 on consoles

 Problem: Mismatch between previous/current frame

cameras

 Results in wrong visibility tests

Coverage Buffer Reprojection

 Ended up using C-Buffer CPU reprojection from prev. frame camera

 Point splatting of reprojected fragments

 Camera info is encoded into the c-buffer data

 CPU readback and reprojection in separate thread

 ~2ms on SPU, ~3-4ms on Xbox 360 with vectorized code

 Stitching of holes inside C-Buffer after reprojection

 3x3 dilation pass

 Remaining C-Buffer holes: we assume objects are visible

 Reprojection improved culling efficiency greatly

 Solved all kind of occlusion test artifacts, detected invalid areas

 Works more efficiently with higher framerate Remaining C-Buffer holes

 after reprojection

 Outdoor / Indoor

 Stencil tagged regions in G-Buffer passes

 FS Quad and indoor volume BBox

 Additive blended

Deferred Lighting: Ambient

 Accurate diffuse lighting and specular lighting

 Artist pick important sampling locations

 HDR encoded (RGBM)

 Linear blending for diffuse and specular cube map

 Spherical light volume

 G-Buffer material glossiness used for picking mip level

 Consistent specular behaviour between IBL and regular lights

 Alpha blended passes? Pick nearest probe

Deferred Lighting: Environment Probes

Deferred Lighting: Environment Probes

 Add GI [Kaplanyan 2010] (add blend)

 Apply SSDO (mul blend) and RLR (alpha blend)

 Add light sources

 Lights rendering depends on screen coverage heuristics

 FS quads with stencil volumes pre-passes, convex light volumes

or 2D quads

 Normalized Blinn-Phong [Hoffman 2010]

 For C2, only projectors and point lights

 Limited shadow casters count on consoles - go bananas on PC

Deferred Lighting: GI, SSDO, RLR, Lights

Shadows

 Shadow mask for sun

 Special render target to accumulate shadow occlusion

 Shadow mask combines multiple shadowing technique on top on

each other before using with actual shading

 Point light shadows rendered directly to the light buffer

Deferred Shadows

10+ shadow casting lights Sun shadow mask

Cascaded Shadows Maps

 Cascaded shadow maps used since Crysis 1

 Cascades Splitting Scheme

 Approximate Logarithmic texel density distribution

 Shadow frustums adjusted to cover camera view

frustum conservatively

 Orientation for shadow frustums is fixed in world space

 More cascades allow

 Improved texel density, reduced acne and improved self-shadowing for wider shadow

range due to better approximation of the logarithmical distribution

• For each cascade snap the shadow frustum to the SM’s texel grid

 Shadow passes for cascades/point lights rendered in deferred way

 Potential shadow receiving areas tagged in stencil buffer by rendering

frustum volumes

 Allows to have more sophisticated splitting into cascade

 Pick a cascade with the highest resolution in overlapping regions

 Avoids wasting of shadow map space

Deferred Shadow Passes

 Not all the cascades are updated during a single frame

 Update cost distributed across several frames

 Performance reasons (PS3 particularly)

 Allows us to have more cascades – better shadow map density

distribution

 Cached Shadow Maps use cached Shadow Matrices

 Distant cascades are updated less frequently

 Last cascade uses VSM and blends additively with the shadow mask

 Allows to have large penumbras from huge distant objects

Shadow Cascades Caching

 We always split omni-directional lights into six independent projectors

 Shadow map for each projector is scaled separately

 Based on the shadow projection coverage

 Final scale is a result of

logarithmic shadow map density distribution function,

which uses the coverage as a parameter

 Big texture atlas to pack all shadow maps

each frame after scaling

 Texture atlas is allocated permanently to avoid

memory fragmentation

 Size on consoles: 1024x1024 (4 MB)

 Receiving area tagged by stencil

Point Light Shadows

Shadow atlas

Soft Shadows Approximation

Soft Shadows Approximation

 We use Poisson PCF taps with randomized rotations in shadow space

 Adjusting the kernel size at runtime allows to have a good

approximation of soft shadows with variable penumbra

 Soft shadows idea: Estimate average distance ratio to shadow casters

 Similar to Percentage-Closer Soft Shadows [Randima2005]

 Basic Algorithm:

 Poisson distributed taps are presorted by distance from the kernel center

 Initial kernel radius set to match maximum range (= biggest/longest penumbra)

 Use this kernel to estimate the average distance ratio

 The number of samples is reduced proportionally to the avg. distance ratio

 This affects the radius of the kernel since the taps are sorted

 Use only the reduced number of samples for final shadow computation

 Cascade shadow maps need custom kernel scale adjustment

to handle transitions between cascades

 Compute Shader option: fetch all taps to CS shared memory

and reuse them for both distance estimation and shadow computation

Soft Shadows Approximation

 For alpha blended shadow receivers

 Forward passes to apply shadows

 For transparent shadow casters we accumulate the alpha

values of the casters

 Stored in 8-bit render target

Shadows & Transparency

 Translucency map generation:

 Depth testing using depth buffer from regular opaque shadow map to

avoid back projection/leaking

 Alpha blended shadow generation pass to accumulate translucency alpha

(sorted back to front)

 In case of cascaded shadow maps, generate translucency map for each

cascade

 Shadow terms from shadow map and translucency map are both

combined during deferred shadow passes with max() operation

Shadows & Transparency

Shadows Video

Real Time Local Reflections

 Reflections are expensive with rasterization

 Usually planar reflections or cubemaps

 Require re-rendering of scene

 Standard reflections limited

 Either planar surface

 Tiny area for cube maps

 Usually no curved surfaces

 Reflections straightforward with raytracing

 Raytracing in screen space to approximate local reflections

 First iteration was demonstrated at GDC 09

Real Time Local Reflections

 Basic Algorithm

 Compute reflection vector for each pixel

 Uses deferred normal and depth targets

 Raymarch along reflection vector

 Sample depth and check if ray depth is within threshold to scene depth

 If hit, reproject into framebuffer of previous frame and sample color

 Results

 Relatively cheap

 Local reflections everywhere (even on complex surfaces)

 Very cool where it works

 Plenty of problematic cases due to limited data in screen space

Real Time Local Reflections (RLR)

 Implementation Tips

 Very limited screen space data

 Rather no reflections than broken looking ones

 Smoothly fade out if reflection vector faces viewer as no data is available in

that case

 Smoothly fade out reflection samples at screen edges

 Add jittering to step size to hide noticeable step artifacts

 HDR color target sampled in Crysis 2

 Jitter or blur based on surface glossiness

Real Time Local Reflections (RLR)

 Core idea same as SSDO [Ritschel 2010]

 Modulate lighting with computed screen space occlusion

 Produces soft contact shadows

 Can also hide shadow bias issues

 Considerable quality gain over just SSAO

 However, directional occlusion info accessible in a

deferred way

 Fits better into existing lighting pipeline

 Can be applied efficiently to every light source

Contact Shadows

Contact Shadows

 Occlusion info generation

 Compute and store bent normal N' during SSAO pass

 Bent normal is average unoccluded direction

 Requires clean SSAO without any self-occlusion and relatively wide

radius

 For each light

 Compute N dot L as usual

 Compute N' dot L

 Attenuate lighting by occlusion amount multiplied with clamped

difference between the two dot products

Contact Shadows

 Main Idea: Reuse diffuse lighting accumulation

 Proof of concept since beginning of project (early 2008)

 Subsurface scattering in screen space

 Gather lighting taps during geometry pass

 Used a Poisson distribution

 Best bits

 No additional memory requirements for atlas

 No redundant work

 Concept expandable to UV space [Borshukov 2001]

 Cost proportional to screen area coverage
Head model courtesy of Infinite-Realities

Deferred Skin Shading

 Couldn’t afford per-character shadow map (memory)

 How to workaround lack of memory on consoles ?

 Simple trick/approximation

 Ray march along screen space light vector

 Macro self-shadowing details for all characters, even on consoles

Screen Space Self-Shadowing

 Efficient hair rendering is a pain on this hardware generation

 Robust solutions:

 Alpha test looks very 1999. >= 4x SSAA ? Not yet for consumer HW

 ATOC doesn’t look so good and requires hardware MSAA

 Stippling + filtering ? Kind of works, but half res’ish look

 Idea: Post process for anti-aliasing the alpha test look

 Another oldie from beginning of project (early 2008)

 Directional blur (8 taps) along Tangent vector in Screen Space

 Visual hint for transparency and smooth hair look

 Additional Hair geometry pass

 Fur rendering? Directional blur along Normal vector in SS

Soft Alpha-Test

Soft Alpha-Test

Batched HDR Post Processing

 Re-projection for static + velocity buffer for dynamic obj.

 Full resolution means at least ~3 ms spent (consoles)

 Half resolution and RGBM encoded

 Total 16 x less BW versus full res and fat formats

 Composition mask for blending with full resolution

 Object velocity buffer dilation [Sousa 2008] on the fly

 All done in linear space before tone mapping

 Bright streaks are kept and propagated [Debevec 1998]

 Consoles: 9 taps; PCs higher specs: 24 taps

Camera & Object Motion Blur

Camera & Objects V RT1:Composite Mask

Camera & Object Motion Blur

RT0: Blurred Target (RGBM) Half-Res linear input (RGBM)

CoC

Half-Res linear input (RGBM)

RT1:Composite Mask

RT0: Blurred Target (RGBM)

Bokeh DOF: Another Kernel and Weights

 It’s just a blur we really want

 How to reuse all taps/bw, share all gpu work ?

 Idea: Offsets morphing based on blur type

 Camera/Objects moving? Directional versus disk kernel

 More uses: masked blur, radial blur, etc

 Final composite done directly in tone mapping pass

 1 ms on consoles. Super fast on PC at 1080p

 Almost 10x faster than doing all posts individually (at fullres)

Maximum Batching

 Single pass at full screen resolution

 12 taps + clamp maximum range to limit undersampling

 Alpha channel stores objects ID

 Blur masking scheme based on velocity and ID

 ||V|| > threshold ? Allow bleeding, else reject tap

 Early out if ||V|| < threshold

Ultra Specs: Motion Blur

 Go Bananas: Render a Quad/Sprite per pixel [Cyril 2005]

 GS to scale quads by CoC factor

 Accumulate results into Foreground/Background targets

 Masking by sorting quads per layers

 Alpha channel stores quad count

 Dithering to minimize precision loss

 Composite with final scene

 Divide layers result by layer alpha

 Great Quality ! (but very slow)

Ultra Specs: Bokeh DOF

 Making it fast

 Render Half Res

 Reject Quads in interleaved pattern

 Early out for VS/PS

 Spherical aperture using ALU

 Future: avoid geometry shader usage

 Composite with final scene

 Back layer composited using

full resolution CoC

 Front layer is ok to bleed anyway

Ultra Specs: Bokeh DOF

Ultra Specs Post Processes Video

What if…

S3D Image Generation

 Standard approach: Render scene two times

 Great quality, pretty straightforward

 Problematic for GPU heavy games

 Often means half the framerate

 Would require heavy quality reduction for C2

 Resolution, LODs, view distance, effect quality/amount

 Image space approach: Reprojection

 Reconstruct view/world space position of pixel and project into space of left/right eye

cameras

 Basically point splatting

 Scattering not efficiently possible on D3D9/10 GPUs

 Requires second hole filling pass

S3D Image Generation

 Image offsetting in Pixel Shader

 Gather based approach

 For each pixel, compute disparity from depth buffer

 Sample backbuffer with positive/negative disparity as offset to generate

warped image (using bilinear filtering)

S3D Image Generation

Disparity computed using Thales Theorem

Disparity: distance between projected positions of point in left/right views

MS: maximum separation (e.g. 3% of screen)

ZPD: zero parallax plane distance

Disparity = MS * (1 – ZPD / Depth)

 Algorithm samples backbuffer with offset

 Issues due to missing data in main view

 Problem: Occlusion

 Background should be sampled but foreground object is in image

 Easy to find by checking for closer depth, replicate background instead

 Our solution: Find minimum depth and use it for computing disparity

 Small depth means small offset as well

 Adds some randomization to the replication

S3D Image Generation

const float samples[3] = { 0.5, 0.66, 1 };

float minDepthL = 1.0, minDepthR = 1.0;

float2 uv = 0;

for(int i = 0; i < 3; ++i) {

 uv.x = samples[i] * MaxSeparation;

 minDepthL = min(minDepthL, GetDepth(baseUV + uv));

 minDepthR = min(minDepthR, GetDepth(baseUV - uv));

}

float parallaxL = MaxSeparation * (1 – ZPD / minDepthL);

float parallaxR = MaxSeparation * (1 – ZPD / minDepthR);

left = tex2D(backBuf, baseUV + float2(parallaxL, 0));

right = tex2D(backBuf, baseUV - float2(parallaxR, 0));

S3D Image Generation: Shader Sample

 Simple and very efficient, about 1 ms on consoles

 Works with standard stereo parameters, negative and positive parallax

 Overall results very similar to rendering two times

 Does not handle disocclusion

 Works well enough for scenes with sparse silhouettes (e.g. city scene with huge buildings) and

carefully chosen stereo parameters

 More problematic for very close objects like FP weapon

 Huger area with missing information

 See slight halos around objects (replicated background)

 Does not work for transparent objects (not in depth buffer)

 They get separation of background (somehow acceptable if overall scene depth is limited)

 Left/right screen edges need special consideration

 For example cropping image

S3D Image Generation

 Conclusion

 Technique is far from being perfect

 Many potential issues

 Good amount of tweaking required

 Very well received for Crysis 2, especially on consoles

 No loss of visual fidelity in s3D

 Can be an option if you can live with some artifacts and limited

depth range

S3D Image Generation

 Respecting some rules is essential to create a

comfortable experience

 Everything goes into the screen in Crysis 2

 No window violation possible

 No extreme refocusing required

 Avoiding depth conflicts

 Perceived 3D depth does not match rendering

 E.g. crosshair is deeper than wall but rendered in front of it

 Very annoying, causes unpleasant side effects for viewers

S3D Image Generation

 3D HUD

 Core elements placed carefully in 3D space to avoid intersections

with world

 Crosshair

 Pushed into the world to be in front of player

 Can often cause depth conflicts

 Cast ray into world, check for intersection

 Adapt position smoothly in case of intersection

S3D Image Generation

 Certain ZPD required to get acceptable parallax

distribution

 Problematic for FPS games

 Weapon would come out of screen

 Solution

 Weapon pushed into screen during stereo image generation

 However, can cause depth conflicts when close to wall

 To avoid this, check for close objects and reduce ZPD to fade out

stereo effect smoothly

S3D Image Generation

 3.5 years immense amount of work

 We only covered here a very small sub-set

 Whats next for CryENGINE ?

 Bigger, better, faster. Avatar Quality in Realtime ?

 Not that crazy, with properly done assets for realtime

 We need faster consoles for a BIG “next gen” step:

 Big = huge visual step, as in Far Cry to Crysis 1

 Insane amount of GPU Power (4x NV 590)

 Insane amount of memory (>= 8 GB)

Conclusion

 Vaclav Kyba, Michael Kopietz, Carsten Wenzel,

Vladimir Kajalin, Andrey Konich, Anton Knyazyev,

Ivo Zoltan Frey, Ivo Herzeg

 Marco Corbetta, Christopher Evans, Chris Auty

 Magnus Larbrant, Pierre-Ives Donzallaz, Chris North

 Natalya Tatarchuk

 And to the entire Crytek Team

Special Thanks

 Gritz, L. “The Importance of Being Linear”, 2008

 Debevec, P. “Recovering High Dynamic Range Radiance Maps from Photographs”, 1998

 Tchou, C. “HDR The Bungie Way”, 2008

 Vlachos, A. “Post Processing in The Orange Box”, 2008

 Cook, D. “Xbox Textures – Formats, Conversion, Fetching and Performance”, 2008

 Valient, M. “The Rendering Technology of Killzone 2“, 2008

 Kaplanyan, A. “Real-time Diffuse Global Illumination in CryENGINE 3”, 2009

 Sousa, T. “Crysis Next Gen Effects”, 2008

 Reinhard, E. et al. “High Dynamic Range Imaging” , 2010

 Hoffman, N. et al. “Physically-Based Shading Models in Film and Game Production”, 2010

 Sousa, T. “CryENGINE 3 Rendering Techniques”, 2011

 Grosch T. and Ritschel T. “Screen-Space Directional Occlusion”. GPU Pro, 2010

 Randima, F “Percentage Closer Soft-Shadows”, 2005

 Krassnigg, J “A Deferred Decal Rendering Technique”, Game Engine Gems 1, 2011

 Cyril, P. et al.”Photographic Depth of Field Rendering”, 2005

 Borshukov, G. and Lewis, J.P “Realistic Human Face Rendering for “The Matrix Reloaded””, 2001

References

Tiago@crytek.com / Twitter: Crytek_Tiago

Nicolas@crytek.com

Nick@crytek.com

Questions

mailto:Tiago@crytek.com
mailto:Nicolas@crytek.com
mailto:Nick@crytek.com

Bonus Slides

 HDR [Reinhard 2010]

 Precision, range

 Physically based post processing

 Linear Correctness [Gritz 2008]

 All computations in exact same

space

HDR & Linear Correctness

Computing VPOS warp basis

float fProjectionRatio = fViewWidth/fViewHeight; // projection ratio

//all values are in camera space

float fFar = cam.GetFarPlane();

float fNear = cam.GetNearPlane();

float fWorldHeightDiv2 = fNear * cry_tanf(cam.GetFov()*0.5f);

float fWorldWidthDiv2 = fWorldHeightDiv2 * fProjectionRatio;

float k = fFar/fNear;

Vec3 vStereoShift = camMatrix.GetColumn0().GetNormalized() * cam.GetAsymL();

//apply matrix orientation

Vec3 vZ = (camMatrix.GetColumn1() * fNear + vStereoShift)* k; // size of vZ is the distance from camera pos

to near plane

Vec3 vX = camMatrix.GetColumn0() * fWorldWidthDiv2 * k;

Vec3 vY = camMatrix.GetColumn2() * fWorldHeightDiv2 * k;

vZ = vZ - vX;

vX *= (2.0f/fViewWidth);

vZ = vZ + vY;

vY *= -(2.0f/fViewHeight);

//Transform basis to any local space (shadow space here)

vWBasisX = mShadowTexGen * Vec4 (vX, 0.0f);

vWBasisY = mShadowTexGen * Vec4 (vY, 0.0f);

vWBasisZ = mShadowTexGen * Vec4 (vZ, 0.0f);

vCamPos = mShadowTexGen * Vec4 (cam.GetPosition(), 1.0f);

Geometrical Meaning of Reconstruction

 Two main reasons

 Low shadow map texel density

 Precision of depth buffers

 Different scenarios to overcome acne

 Sun shadows: front faces rendered with slope-

scaled depth bias

 Point light shadows: back face rendering, works

better for indoors scenes

 Variance shadows for distant LODs - render both

faces to shadow maps

 Constant depth bias during deferred

shadow passes to overcome depth buffer

precision

Shadow Acne

 Can’t afford each light casting shadows on consoles

 Clip Boxes / Volumes

 Tool for lighting artists to eliminate light bleeding using stencil culling

 Each deferred light doesn’t need to have fully generated shadow

maps

 Artist can create arbitrary convex volumes or use default primitives

Minimizing Light Bleeding

 Forward Decals have quite some issues

 Additional memory, mesh re-allocations causing memory fragmentation,

CPU time for dynamic mesh creation, etc

 Deferred decals to the rescue! [14]

 Rendered as a decal box volume, very similar to deferred lights

 Separate diffuse layer + normal map buffer blending

 Fetching diffuse texture and computing attenuation for shading

 No lighting/shading computed here

 Applied to static geometry only

Deferred Decals

Deferred Decals

Initial scene Decals diffuse layer

Road Decals Final scene

 Problems

 In case decals have normal maps results in tangent space mismatch with

the regular decals

 Leaking of deferred decals

Deferred Decals

 Solutions for leaking

 Adjustable decal volume and

decal attenuation function

 Dot product between Scene Normals and Decal Tangent Space

Normal

 Problematic if decal uses normal maps itself

 X360: render to EDRAM and always have separate copy in

the resolved Scene Normals texture

 PS3 : render target read/write during convex volume’s

rasterization

Deferred Decals

