

Secrets of CryENGINE 3 Graphics Technology

Contents:

ÁRendering Pipeline

ÁPosition Reconstruction

ÁCoverage Buffer

ÁDeferred Lighting

ÁShadows

ÁScreen Space Techniques

ÁDeferred Techniques

ÁBatched HDR Post Processing

ÁStereo Rendering

Secrets of CryENGINE 3 Graphics Technology

Nickolay Kasyan Nicolas Schulz Tiago Sousa
Senior Graphics Engineer Senior Graphics Engineer Principal Graphics Engineer

Crytek

ÁLinear Correct HDR Rendering [Gritz 2008] [Reinhard 2010]

ÁMinimal G-Buffer: Depth and Normals

Á Opaque, decals, def. decals,terrain layers

ÁDeferred Lighting

Á Ambient, env. lighting probes

Á GI, SSDO, RLR, Lights

Á Physically based shading

ÁOpaque / Transparent passes

ÁHDR / LDR Posts

Physically Based Rendering

ÁSlim G-Buffer

Á A8B8G8R8 World Space BF Normals + Glossiness

Á Readback D24S8 Depth + Stencil bits for tagging indoor surfaces

Á2x A2B10G10R10F_EDRAM for Diffuse and Specular buffers

Á X360: Resolved to A2B10G10R10 [Cook 2008]

Á PS3: 2x A8B8G8R8 encoded in RGBM

Á Encoding <=> No HW blending possible. Workaround: r/w from dst RT

Á PC: 2x A16B16G16R16F (most general format)

ÁA2B10G10R10F_EDRAM for scene target

Á PS3: A8B8G8R8 RGBM encoded for opaque, FP16 for transparents

Á PC: A16B16G16R16F

G-Buffer/L-Buffers/Scene Targets

ÁHyperbolic distribution
Á Needs conversion to linear space before using in shaders

Problem: First person view objects
Á Depth buffer is used to prevent overlapping FPV objects with the rest

of the scene

Á Different FOV and near/far plane (art specific choice)

Á Different depth range to prevent actual overlapping

Á => Deferred techniques donôt work 100% for such objects

Z-Buffer Depth Caveats

//Constants

g_ProjRatio.xy = float2 (zfar / (zfar - znear), znear / (znear - zfar));

//HLSL function

float GetLinearDepth(float fDevDepth)

{ return g_ProjRatio.y/(fDevDepth - g_ProjRatio.x);}

ÁOur final solution:

ÁModifying depth reconstruction function

Á Convert hardware depth to linear one

Á Different depth scale for first person view object

Á Selecting based on depth

Addressing First Person View Objects

float GetLinearDepth (float fDevDepth) {

 float bNearDepth = step (fDevDepth , g_PS_DepthRangeThreshold);

 float2 ProjRatio.xy = lerp (g_PS_ProjRatio.xy , g_PS_NearestScaled.xy , bNearDepth);

 return ProjRatio.y /(fDevDepth - ProjRatio.x);

}

Á Idea: linearly transform VPOS from screen space S directly to

target homogeneous space W (shadow space or world space)

ÁDirect transformation from screen

clip space to homogeneous matrix

Á VPOS is simplest way to render

 deferred light volumes

ÁSeparate adjustment for s3D

Reconstructing Position from Depth

Geometrical Meaning of Reconstruction

X = vStoWBasisX

Y = vStoWBasisY

Z = vStoWBasisZ

float4 HPos = (vStoWBasisZ + (vStoWBasisX * VPos.x)+(vStoWBasisY * VPos.y)) *

fSceneDepth ;

HPos += vCamPos.xyzw ;

Coverage Buffer

ÁMostly outdoors for Crysis2

ÁApproximately 70%

ÁPortals or PVS not efficient there

ÁCoverage Buffer as main occlusion culling system

ÁEssentially low resolution depth buffer

ÁCoarse CPU rasterization of object AABBs/OBBs for visibility z-
tests

ÁToo slow to prepare fully detailed C-Buffer on CPU

ÁHuge computation cost

ÁFull rendering pipeline has to be duplicated in software to obtain
all details for C-Buffer

Coverage Buffer

ÁRead-back of previous frameôs GPU depth buffer on CPU

ÁDownscaling ZBuffer on GPU (max filter) after G-Buffer pass

ÁCulling done by rasterizing BBoxes in a separate CPU thread

Original: 1920x1080

Downscaled: 256x128

Coverage Buffer

ÁUsed on X360/PS3 and DX11 HW

ÁConsoles perfect for this (1 frame latency)

ÁRead-back latency on PC is higher but still acceptable (up to 4 frames)

ÁC-Buffer size limited to 256x128 in Crysis 2 on consoles

ÁProblem: Mismatch between previous/current frame

cameras

Á Results in wrong visibility tests

Coverage Buffer Reprojection

Á Ended up using C-Buffer CPU reprojection from prev. frame camera

Á Point splatting of reprojected fragments

Á Camera info is encoded into the c-buffer data

Á CPU readback and reprojection in separate thread

Á ~2ms on SPU, ~3-4ms on Xbox 360 with vectorized code

Á Stitching of holes inside C-Buffer after reprojection

Á 3x3 dilation pass

Á Remaining C-Buffer holes: we assume objects are visible

Á Reprojection improved culling efficiency greatly

Á Solved all kind of occlusion test artifacts, detected invalid areas

Á Works more efficiently with higher framerate Remaining C-Buffer holes

 after reprojection

ÁOutdoor / Indoor

Á Stencil tagged regions in G-Buffer passes

Á FS Quad and indoor volume BBox

Á Additive blended

Deferred Lighting: Ambient

ÁAccurate diffuse lighting and specular lighting

Á Artist pick important sampling locations

Á HDR encoded (RGBM)

Á Linear blending for diffuse and specular cube map

Á Spherical light volume

ÁG-Buffer material glossiness used for picking mip level

Á Consistent specular behaviour between IBL and regular lights

ÁAlpha blended passes? Pick nearest probe

Deferred Lighting: Environment Probes

Deferred Lighting: Environment Probes

ÁAdd GI [Kaplanyan 2010] (add blend)

ÁApply SSDO (mul blend) and RLR (alpha blend)

ÁAdd light sources

Á Lights rendering depends on screen coverage heuristics

Á FS quads with stencil volumes pre-passes, convex light volumes

or 2D quads

Á Normalized Blinn-Phong [Hoffman 2010]

Á For C2, only projectors and point lights

Á Limited shadow casters count on consoles - go bananas on PC

Deferred Lighting: GI, SSDO, RLR, Lights

Shadows

ÁShadow mask for sun

ÁSpecial render target to accumulate shadow occlusion

ÁShadow mask combines multiple shadowing technique on top on

each other before using with actual shading

ÁPoint light shadows rendered directly to the light buffer

Deferred Shadows

10+ shadow casting lights Sun shadow mask

Cascaded Shadows Maps

Á Cascaded shadow maps used since Crysis 1

Á Cascades Splitting Scheme

Á Approximate Logarithmic texel density distribution

Á Shadow frustums adjusted to cover camera view

frustum conservatively

Á Orientation for shadow frustums is fixed in world space

ÁMore cascades allow

Á Improved texel density, reduced acne and improved self-shadowing for wider shadow

range due to better approximation of the logarithmical distribution

ÅFor each cascade snap the shadow frustum to the SMôs texel grid

Á Shadow passes for cascades/point lights rendered in deferred way

Á Potential shadow receiving areas tagged in stencil buffer by rendering

frustum volumes

Á Allows to have more sophisticated splitting into cascade

Á Pick a cascade with the highest resolution in overlapping regions

Á Avoids wasting of shadow map space

Deferred Shadow Passes

