
Advancements in Tiled-Based 
Compute Rendering

Gareth Thomas
Developer Technology Engineer, AMD



Agenda

●Current Tech

●Culling Improvements

●Clustered Rendering

●Summary



Proven Tech – Out in the Wild
●Tiled Deferred [Andersson09]

●Frostbite

●UE4

●Ryse

●Forward+ [Harada et al 12]

●DiRT & GRID Series

●The Order: 1886

●Ryse



Tiled Rendering 101

1
2

3

[1] [1,2,3] [2,3]



Tiled Rendering 101

● Divide screen 
into tiles

● Fit asymmetric 
frustum around 
each tile

Tile0 Tile1 Tile3Tile2



Tiled Rendering 101

● Use z buffer from 
depth pre-pass 
as input

● Find min and max
depth per tile

● Use this frustum for 
intersection testing



Tiled Rendering 101

•Position

•Radius
Light0

•Position

•Radius
Light1

•Position

•Radius
Light2

•Position

•Radius
Light3

•Position

•Radius
Light4

…

•Position

•Radius
Light10



Index1 •1

Tiled Rendering 101

•Position

•Radius
Light0

•Position

•Radius
Light1

•Position

•Radius
Light2

•Position

•Radius
Light3

•Position

•Radius
Light4

…

•Position

•Radius
Light10

•4Index2

•Lights=2Index0

Index3 •Empty

Index4 •Empty

…

1
4



Targets for Improvement

●Z Prepass (on Forward+)

●Depth bounds

●Light Culling

●Color Pass



Depth Bounds

● Determine min and max 
bounds of the depth buffer 
on a per tile basis

● Atomic Min Max [Andersson09]



// read one depth sample per thread

// reinterpret as uint

// atomic min & max 

// reinterpret back to float 



Parallel Reduction

●Atomics are useful but not efficient

●Compute-friendly algorithm 

●Great material already available:
●“Optimizing Parallel Reduction in CUDA” [Harris07]

●“Compute Shader Optimizations for AMD GPUs: Parallel Reduction” [Engel14]



59 86 95 53 97 18 28 46

57 16 25 43

depth[tid] = min(depth[tid],depth[tid+8])

25 13

depth[tid] = min(depth[tid],depth[tid+4])

13

depth[tid] = min(depth[tid],depth[tid+2])

1

depth[tid] = min(depth[tid],depth[tid+1])



Implementation details

●First pass reads 4 depth samples

●Needs to be separate pass

●Write bounds to UAV

●Maybe useful for other things too





Parallel Reduction - Performance

Atomic 
Min/Max

Parallel 
Reduction

AMD R9 290X 1.8ms 1.60ms

NVIDIA GTX 980 1.8ms 1.54ms

● Combined cost of depth bounds and light culling of 2048 lights at 3840x2160

● Parallel reduction pass takes ~0.35ms

● Faster than Atomic Min/Max on the GPUs tested



Light Culling:
The Intersection Test



Sphere-Frustum Test



Sphere-Frustum Test



AABB around Frustum

Frustum planes



AABB around 
long frustum

AABB around 
short frustum



Arvo Intersection Test [Arvo90]



Single Point Light



Frustum/Sphere Test



Arvo AABB/Sphere Test



Culling Spot Lights

●Don’t put bounding 
sphere around spot light 
origin

●Tightly bound spot light 
inside sphere at P with 
radius r

spot position

P
r

θ
r

d



Depth Discontinuities



Depth Discontinuities

False Positives

Scene Geometry



2.5D Culling [Harada et al 12]

Scene Geometry

Geometry Mask

1 1 1 1

1 1 1

Light Mask



HalfZ

Scene Geometry
HalfZ

MinZ

MaxZ HalfZ low bits

HalfZ high bits

numLights near side

numLights far side

light indices…

3

4

lo

hi

16 bit light index buffer
size: maxLightsPerTile x 2 + 4



Modified HalfZ

HalfZ

MinZ

MaxZ

MinZ2

MaxZ2

●Calculate Min & Max Z as normal

●Calculate HalfZ

●Second set of Min and Max values using 
HalfZ and max & min respectively

●Test against near bounds and far bounds

●Write to either one list

●Or write to two lists cf. HalfZ

●Doubles the work in the depth bounds pass

●Worst case converges on HalfZ



Sponza Atrium + 1 million sub pixel triangles





MinMax depth bounds, Frustum culling



MinMax depth bounds, AABB culling



MinMax depth bounds, Hybrid culling (AABB + Frustum sides)



Modified HalfZ depth bounds, AABB culling



Unreal Engine 4, Infiltrator Demo



Modified HalfZ in one light list

MinMax Depth Bounds









What happens if we cull 32x32 tiles?

Still using 16x16 thread groups





Culling Conclusion

●Modified HalfZ with AABBs generally works best
●Even though generating MinZ2 and MaxZ2 adds a little cost

●Even though culling each light against two AABBs instead of one

●32x32 tiles saves a good chunk of time in the culling stage
●…at the cost of color pass efficiency when pushing larger number of lights



Clustered Rendering [Olsson et al12] 

●Production proven in Forza Horizon 2

●Additional benefits on top of 2D 
culling:

●No mandatory Z prepass

●Just works™ for transparencies and 
volumetric effects

●Can a further reduction in lights per 
pixel improve performance?



Clustered Rendering 101

● Divide screen 
into tiles

● Fit asymmetric 
frustum around 
each tile

Tile0 Tile1 Tile3Tile2

● Divide down Z 
axis into n
slices or 
clusters



Clustered Rendering

●Divide up Z axis 
exponentially

●Start at some sensible 
near slice

●Cap at some sensible 
value



Provision for far lights

● Fade them out

● Drop back to glares

● Prebake



Light Culling

●View space AABBs worked best on 
2D grid

●Bad when running say 16 slices

●View space frustum planes are 
better

●Calculate per tile planes

●Then test each slice near and far

●Optionally, then test AABBs



VRAM Usage

●16x16 pixel 2D grid requires numTilesX x numTilesY x 
maxLights

●1080p: 120x68x512xuint16 = 8MB

●4k: 240x135x512xuint16 = 32MB

●List for each light type (points & spots): 64MB

●So 32 slices: 1GB for point lights only 

●Either use coarser grid

●Or use a compacted list



Compacted List
●Option 1:

●Do all culling on CPU [Olsson et al12] [Persson13][Dufresne14]

●But some of the lights may be spawned by the GPU

●My CPU is a precious resource!

● Option 2:
●Cull on GPU

●Keep track of how many lights per slice in TGSM

●Write table of offsets in light list header

●Only need maxLights x “safety factor” per tile



Coarse Grid

●Example:
●4k resolution

●64x64 pixel tiles with 64 slices

●maxLights = 512

●60 x 34 tiles x 64 slices x 512 x 
uint16 = 128MB









Z Prepass

●Very scene dependant

●Often considered too expensive

●DirectX12 can help draw submission cost

●Should already have a super optimized depth only path for 
shadows!

● Position only streams

● Index buffer to batch materials together

●A partial prepass can really help lighten the geometry load



Conclusions
●Parallel Reduction - faster than atomic min/max

●AABB-Sphere test in conjunction with Modified HalfZ is a 
good choice

●Clustered shading

●Potentially a big saving on the tile culling

●Less overhead for low light numbers

●Offers other benefits over 2D tiling

●Aggressive culling is very worthwhile
●The best optimisation for your expensive color scene



References
●[Andersson09] Johan Andersson, “Parallel Graphics in Frostbite – Current & Future”, Beyond 
Programmable Shading, SIGGRAPH 2009

●[Harada et al12] Takahiro Harada, Jay McKee, Jason C Yang, “Forward+: Bringing Deferred 
Lighting to the Next Level”, Eurographics 2012

●[Harris07] Mark Harris, “Optimizing Parallel Reduction in CUDA”, NVIDIA 2007

●[Engel14] Wolfgang Engel, “Compute Shader Optimizations for AMD GPUs: Parallel Reduction”, 
Confetti 2014

●[Harada12] Takahiro Harada, “A 2.5D Culling for Forward+”, Technical Briefs, SIGGRAPH Asia 
2012

●[Arvo90] Jim Arvo, “A simple method for box-sphere intersection testing”, Graphics Gems 1990

●[Dufresne14] Marc Fauconneau Dufresne, “Forward Clustered Shading”, Intel 2014

●[Persson13] Emil Persson, “Practical Clustered Shading”, Avalanche 2013 

●[Olsson et al12] Ola Olsson, Markus Billeter, Ulf Assarsson, “Clustered Deferred and Forward 
Shading”, HPG 2012

●[Schulz14] Nicolas Schulz, “Moving to the Next Generation – The Rendering Technology of 
Ryse”, GDC 2014



Thanks

●Jason Stewart, AMD

●Epic Rendering Team

●Emil Persson, Avalanche Studios



Questions?

gareth.thomas@amd.com

mailto:Gareth.thomas@amd.com

