

Practical Clustered Shading

Emil Persson
Head of Research, Avalanche Studios

Practical Clustered Shading

● History of lighting in the Avalanche Engine
● Why Clustered Shading?
● Adaptations for the Avalanche Engine
● Performance
● Future work

Lighting in Avalanche Engine
● Just Cause 1

● Forward rendering
● 3 global pointlights

● Just Cause 2, Renegade Ops
● Forward rendering
● World-space XZ-tiled light-indexing

– 4 lights per 4m x 4m tile
– 128x128 RGBA8 light index texture
– Lights in constant registers (PC/Xenon) or 1D texture (PS3)

● Per-object lighting
● Customs solutions

Lighting in Avalanche Engine
● Post-JC2 unannounced projects

● Classic deferred rendering
– 3-4 G-Buffers
– Flexible lighting setup

● Point lights
● Spot lights

– Optional shadow caster
– Optional projected texture

● Area lights
● Fill lights

● Transparency a big problem
– Old forward pass still polluting the code

● FXAA for anti-aliasing

Solutions we've been eyeing
● Tiled deferred shading

● Production proven (Battlefield 3)

● Faster than classic deferred

● All cons of classic deferred

– Transparency, MSAA, memory,
custom materials / light models etc.

● Less modular than classic deferred

● Forward+
● Production proven (Dirt Showdown)

● Forces Pre-Z pass

● MSAA works fine

● Transparency requires another pass

● Less modular than classic deferred

● Clustered shading
● Not production proven (yet)

● No Pre-Z necessary

● MSAA works fine

● Transparency works fine

● Less modular than classic deferred

Why Clustered Shading?
● Flexibility

● Forward rendering compatible

– Custom materials or light models

– Transparency

● Deferred rendering compatible

– Screen-space decals

– Performance

● Simplicity
● Unified lighting solution

● Actually easier to implement than full blown Tiled Deferred / Forward+

● Performance
● Typically same or better than Tiled Deferred

● Better worst-case performance

● Depth discontinuities? “It just works”

Depth discontinuities

Depth discontinuities

Depth discontinuities

Depth discontinuities

Practical Clustered Shading
● What we didn't need

● Millions of lights
● Fancy clustering
● Normal-cone culling
● Explicit bounds

● What we needed
● Large outdoor solution
● No enforced Pre-Z pass
● Spotlights
● Shadows

● What we preferred
● Work with DX10 level HW
● Tight light culling
● Scene independence

The Avalanche solution
● Still a deferred shading engine

● But unified lighting solution with forward passes

● Only spatial clustering
● 64x64 pixels, 16 depth slices

● CPU light assignment
● Works on DX10 HW
● Allows compacter memory structure

● Implicit cluster bounds only
● Scene-independent
● Deferred pass could potentially use explicit

The Avalanche solution
● Exponential depth slicing

● Huge depth range! [0.1m – 50,000m]
– Default list

● [0.1, 0.23, 0.52, 1.17, 2.7, 6.0, 14, 31, 71, 161, 365, 828, 1880, 4270, 9696, 22018, 50000]
● Poor utilization

– Limit far to 500
● We have a “distant lights” systems for light visualization beyond that
● [0.1, 0.17, 0.29, 0.49, 0.84, 1.43, 2.44, 4.15, 7.07, 12.0, 20.5, 34.9, 59, 101, 172, 293, 500]

– Special near 0.1 – 5.0 cluster
● Tweaked visually from player standing on flat ground
● [0.1, 5.0, 6.8, 9.2, 12.6, 17.1, 23.2, 31.5, 42.9, 58.3, 79.2, 108, 146, 199, 271, 368, 500]

The Avalanche solution
● Separate distant lights system

The Avalanche solution
Default exponential spacing Special near cluster

Data structure
● Cluster “pointers” in 3D texture

● R32G32_UINT
– R=Offset
– G=[PointLightCount, SpotLightCount]

● Light index list in texture buffer
● R16_UINT
● Tightly packed

● Light data in constant buffer
● PointLight = 2 x float4
● SpotLight = 3 x float4

0, [2,1]

2

3, [1,3] 7, [0,0]

7, [1,0] 8, [1,1] 10, [2,1]

3 ...0 1 32 21 0 130

PointLight0

PointLight1

PointLight2

PointLight3

SpotLight0

SpotLight1

SpotLight2

SpotLight3

... ...

...1

Shader
int3 tex_coord = int3(In.Position.xy, 0); // Screen-space position ...
float depth = Depth.Load(tex_coord); // ... and depth

int slice = int(max(log2(depth * ZParam.x + ZParam.y) * scale + bias, 0)); // Look up cluster
int4 cluster_coord = int4(tex_coord >> 6, slice, 0); // TILE_SIZE = 64

uint2 light_data = LightLookup.Load(cluster_coord); // Fetch light list
uint light_index = light_data.x; // Extract parameters
const uint point_light_count = light_data.y & 0xFFFF;
const uint spot_light_count = light_data.y >> 16;

for (uint pl = 0; pl < point_light_count; pl++) { // Point lights
 uint index = LightIndices[light_index++].x;

 float3 LightPos = PointLights[index].xyz;
 float3 Color = PointLights[index + 1].rgb;
 // Compute pointlight here ...
}

for (uint sl = 0; sl < spot_light_count; sl++) { // Spot lights
 uint index = LightIndices[light_index++].x;

 float3 LightPos = SpotLights[index].xyz;
 float3 Color = SpotLights[index + 1].rgb;
 // Compute spotlight here ...
}

Data structure
● Memory optimization

● Naive approach: Allocate theoretical max
– All clusters address all lights

● Not likely

– Might be several megabytes
– Most never used

● Semi-Conservative approach
– Construct massive worst-case scenario

● Multiply by 2, or what makes you comfortable
● Still likely only a small fraction of theoretical max

– Assert at runtime that you never go over allocation
● Warn if you ever get close

Clustering and depth
● Sample frustum with depths

Clustering and depth
● Tiled frustum

Clustering and depth
● Depth ranges for Tiled Deferred / Forward+

Clustering and depth
● Depth ranges for Tiled Deferred / Forward+ with 2.5D culling

Clustering and depth
● Clustered frustum

Clustering and depth
● Implicit depth ranges for clustered shading

Clustering and depth
● Explicit depth ranges for clustered shading

Clustering and depth
● Explicit versus implicit depth ranges

Clustering and depth
● Tiled vs. implicit vs. explicit depth ranges

Wide depths
● Depth discontinuity range A to F

● Default Tiled: A+B+C+D+E+F
● Tiled with 2.5D: A + F
● Clustered: ~max(A, F)

● Depth slope range A to F
● Default Tiled: A+B+C+D+E+F
● Tiled with 2.5D: A+B+C+D+E+F
● Clustered: ~max(A, B, C, D, E, F)

Data coherency

Branch coherency

Culling
● Want to minimize false positives
● Must be conservative

● But still tight
● Preferably exact

– But not too expensive
– Surprisingly hard!

● 99% frustum culling code useless
● Made for view-frustum culling

– Large frustum vs. small sphere
– We need small frustum vs. large sphere

● Sphere vs. six planes won't do

Culling
● Your mental picture of a frustum is wrong!

Culling
● “Fun” facts:

● A sphere projected to screen is not a circle
● A sphere under projection is not a sphere
● The widest part of a sphere on screen is not aligned with its center
● Cones (spotlights) are even harder

● Frustums are frustrating (pun intended)
● Workable solution:

● Cull against each cluster's AABB

Pointlight Culling
● Our approach

● Iterative sphere refinement
– Loop over z, reduce sphere
– Loop over y, reduce sphere
– Loop over x, test against sphere

● Culls better than AABB
– Similar cost
– Typically culling 20-30%

Culling pseudo-code
for (int z = z0; z <= z1; z++) {

float4 z_light = light;
if (z != center_z) { // Use original in the middle, shrunken sphere otherwise

const ZPlane &plane = (z < center_z)? z_planes[z + 1] : -z_planes[z];
z_light = project_to_plane(z_light, plane);

}
for (int y = y0; y < y1; y++) {

float3 y_light = z_light;
if (y != center_y) { // Use original in the middle, shrunken sphere otherwise

const YPlane &plane = (y < center_y)? y_planes[y + 1] : -y_planes[y];
y_light = project_to_plane(y_light, plane);

}
int x = x0;
do { // Scan from left until with hit the sphere

++x;
} while (x < x1 && GetDistance(x_planes[x], y_light_pos) >= y_light_radius);

int xs = x1;
do { // Scan from right until with hit the sphere

--xs;
} while (xs >= x && -GetDistance(x_planes[xs], y_light_pos) >= y_light_radius);

for (--x; x <= xs; x++) // Fill in the clusters in the range
light_lists.AddPointLight(base_cluster + x, light_index);

}
}

Spotlight Culling
● Our (not so optimal) approach

● Iterative plane narrowing
– Find sphere cluster bounds
– In each six directions

● Do plane-cone test and shrink

– Fill remaining “cube”

CPU Performance

Old system Clustered
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SetupLightLists
AddLightsToLists
GetBoundingSphereLights
GetBoundingBoxLights
ApplyDynamicLights
BFBC

GPU Performance

Sun light only Normal game scene Extreme test-case
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Classic Deferred
Clustered Deferred

Future work
● Clustering strategies

● Screen-space tiles + depth
● Screen-space tiles + distance
● View-space cascades
● World space

– Allows light evaluation outside of view-frustum (reflections etc.)
● Dynamic adjustments?

● Shadows
● Need all shadow buffers up-front
● May need more data per light

Conclusions
● Clustered shading is practical for games

● It's fast
● It's flexible
● It's simple
● It opens up new opportunities

– Evaluate light anywhere
– Ray-trace your volumetric fog

Questions?
 @_Humus_

emil.persson@avalanchestudios.se

mailto:emil.persson@avalanchestudios.se

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

