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Lighting in Avalanche Engine
● Just Cause 1

● Forward rendering
● 3 global pointlights

● Just Cause 2, Renegade Ops
● Forward rendering
● World-space XZ-tiled light-indexing

– 4 lights per 4m x 4m tile
– 128x128 RGBA8 light index texture
– Lights in constant registers (PC/Xenon) or 1D texture (PS3)

● Per-object lighting
● Customs solutions



  

Lighting in Avalanche Engine
● Post-JC2 unannounced projects

● Classic deferred rendering
– 3-4 G-Buffers
– Flexible lighting setup

● Point lights
● Spot lights

– Optional shadow caster
– Optional projected texture

● Area lights
● Fill lights

● Transparency a big problem
– Old forward pass still polluting the code

● FXAA for anti-aliasing



  

Solutions we've been eyeing
● Tiled deferred shading

● Production proven (Battlefield 3)

● Faster than classic deferred

● All cons of classic deferred

– Transparency, MSAA, memory, 
custom materials / light models etc.

● Less modular than classic deferred

● Forward+
● Production proven (Dirt Showdown)

● Forces Pre-Z pass

● MSAA works fine

● Transparency requires another pass

● Less modular than classic deferred

● Clustered shading
● Not production proven (yet)

● No Pre-Z necessary

● MSAA works fine

● Transparency works fine

● Less modular than classic deferred



  

Why Clustered Shading?
● Flexibility

● Forward rendering compatible

– Custom materials or light models

– Transparency

● Deferred rendering compatible

– Screen-space decals

– Performance

● Simplicity
● Unified lighting solution

● Actually easier to implement than full blown Tiled Deferred / Forward+

● Performance
● Typically same or better than Tiled Deferred

● Better worst-case performance

● Depth discontinuities? “It just works”



  

Depth discontinuities



  

Depth discontinuities



  

Depth discontinuities



  

Depth discontinuities



  

Practical Clustered Shading
● What we didn't need

● Millions of lights
● Fancy clustering
● Normal-cone culling
● Explicit bounds

● What we needed
● Large outdoor solution
● No enforced Pre-Z pass
● Spotlights
● Shadows

● What we preferred
● Work with DX10 level HW
● Tight light culling
● Scene independence



  

The Avalanche solution
● Still a deferred shading engine

● But unified lighting solution with forward passes

● Only spatial clustering
● 64x64 pixels, 16 depth slices

● CPU light assignment
● Works on DX10 HW
● Allows compacter memory structure

● Implicit cluster bounds only
● Scene-independent
● Deferred pass could potentially use explicit



  

The Avalanche solution
● Exponential depth slicing

● Huge depth range! [0.1m – 50,000m]
– Default list

● [0.1, 0.23, 0.52, 1.17, 2.7, 6.0, 14, 31, 71, 161, 365, 828, 1880, 4270, 9696, 22018, 50000]
● Poor utilization

– Limit far to 500
● We have a “distant lights” systems for light visualization beyond that
● [0.1, 0.17, 0.29, 0.49, 0.84, 1.43, 2.44, 4.15, 7.07, 12.0, 20.5, 34.9, 59, 101, 172, 293, 500]

– Special near 0.1 – 5.0 cluster
● Tweaked visually from player standing on flat ground
● [0.1, 5.0, 6.8, 9.2, 12.6, 17.1, 23.2, 31.5, 42.9, 58.3, 79.2, 108, 146, 199, 271, 368, 500]



  

The Avalanche solution
● Separate distant lights system



  

The Avalanche solution
Default exponential spacing Special near cluster



  

Data structure
● Cluster “pointers” in 3D texture

● R32G32_UINT
– R=Offset
– G=[PointLightCount, SpotLightCount]

● Light index list in texture buffer
● R16_UINT
● Tightly packed

● Light data in constant buffer
● PointLight = 2 x float4
● SpotLight = 3 x float4
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Shader
int3 tex_coord = int3(In.Position.xy, 0);                 // Screen-space position ...
float depth = Depth.Load(tex_coord);                      // ... and depth

int slice = int(max(log2(depth * ZParam.x + ZParam.y) * scale + bias, 0)); // Look up cluster
int4 cluster_coord = int4(tex_coord >> 6, slice, 0);      // TILE_SIZE = 64

uint2 light_data = LightLookup.Load(cluster_coord);       // Fetch light list
uint light_index = light_data.x;                          // Extract parameters
const uint point_light_count = light_data.y & 0xFFFF;
const uint spot_light_count  = light_data.y >> 16;

for (uint pl = 0; pl < point_light_count; pl++) {         // Point lights
    uint index = LightIndices[light_index++].x;

    float3 LightPos = PointLights[index].xyz;
    float3 Color    = PointLights[index + 1].rgb;
    // Compute pointlight here ...
}

for (uint sl = 0; sl < spot_light_count; sl++) {          // Spot lights
    uint index = LightIndices[light_index++].x;

    float3 LightPos = SpotLights[index].xyz;
    float3 Color    = SpotLights[index + 1].rgb;
    // Compute spotlight here ...
}



  

Data structure
● Memory optimization

● Naive approach: Allocate theoretical max
– All clusters address all lights

● Not likely

– Might be several megabytes
– Most never used

● Semi-Conservative approach
– Construct massive worst-case scenario

● Multiply by 2, or what makes you comfortable
● Still likely only a small fraction of theoretical max

– Assert at runtime that you never go over allocation
● Warn if you ever get close



  

Clustering and depth
● Sample frustum with depths



  

Clustering and depth
● Tiled frustum



  

Clustering and depth
● Depth ranges for Tiled Deferred / Forward+



  

Clustering and depth
● Depth ranges for Tiled Deferred / Forward+ with 2.5D culling



  

Clustering and depth
● Clustered frustum



  

Clustering and depth
● Implicit depth ranges for clustered shading



  

Clustering and depth
● Explicit depth ranges for clustered shading



  

Clustering and depth
● Explicit versus implicit depth ranges



  

Clustering and depth
● Tiled vs. implicit vs. explicit depth ranges



  

Wide depths
● Depth discontinuity range A to F

● Default Tiled: A+B+C+D+E+F
● Tiled with 2.5D: A + F
● Clustered: ~max(A, F)

● Depth slope range A to F
● Default Tiled: A+B+C+D+E+F
● Tiled with 2.5D: A+B+C+D+E+F
● Clustered: ~max(A, B, C, D, E, F)



  

Data coherency



  

Branch coherency



  

Culling
● Want to minimize false positives
● Must be conservative

● But still tight
● Preferably exact

– But not too expensive
– Surprisingly hard!

● 99% frustum culling code useless
● Made for view-frustum culling

– Large frustum vs. small sphere
– We need small frustum vs. large sphere

● Sphere vs. six planes won't do



  

Culling
● Your mental picture of a frustum is wrong!



  

Culling
● “Fun” facts:

● A sphere projected to screen is not a circle
● A sphere under projection is not a sphere
● The widest part of a sphere on screen is not aligned with its center
● Cones (spotlights) are even harder

● Frustums are frustrating (pun intended) 
● Workable solution:

● Cull against each cluster's AABB



  

Pointlight Culling
● Our approach

● Iterative sphere refinement
– Loop over z, reduce sphere
– Loop over y, reduce sphere
– Loop over x, test against sphere

● Culls better than AABB
– Similar cost
– Typically culling 20-30%



  

Culling pseudo-code
for (int z = z0; z <= z1; z++) {

float4 z_light = light;
if (z != center_z) { // Use original in the middle, shrunken sphere otherwise

const ZPlane &plane = (z < center_z)? z_planes[z + 1] : -z_planes[z];
z_light = project_to_plane(z_light, plane);

}
for (int y = y0; y < y1; y++) {

float3 y_light = z_light;
if (y != center_y) { // Use original in the middle, shrunken sphere otherwise

const YPlane &plane = (y < center_y)? y_planes[y + 1] : -y_planes[y];
y_light = project_to_plane(y_light, plane);

}
int x = x0;
do {          // Scan from left until with hit the sphere

++x;
} while (x < x1 && GetDistance(x_planes[x], y_light_pos) >= y_light_radius);

int xs = x1;
do {          // Scan from right until with hit the sphere

--xs;
} while (xs >= x && -GetDistance(x_planes[xs], y_light_pos) >= y_light_radius);

for (--x; x <= xs; x++)     // Fill in the clusters in the range
light_lists.AddPointLight(base_cluster + x, light_index);

}
}



  

Spotlight Culling
● Our (not so optimal) approach

● Iterative plane narrowing
– Find sphere cluster bounds
– In each six directions

● Do plane-cone test and shrink

– Fill remaining “cube”



  

CPU Performance

Old system Clustered
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GPU Performance

Sun light only Normal game scene Extreme test-case
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Future work
● Clustering strategies

● Screen-space tiles + depth
● Screen-space tiles + distance
● View-space cascades
● World space

– Allows light evaluation outside of view-frustum (reflections etc.)
● Dynamic adjustments?

● Shadows
● Need all shadow buffers up-front
● May need more data per light



  

Conclusions
● Clustered shading is practical for games

● It's fast
● It's flexible
● It's simple
● It opens up new opportunities

– Evaluate light anywhere
– Ray-trace your volumetric fog



  

Questions?
      @_Humus_

emil.persson@avalanchestudios.se

mailto:emil.persson@avalanchestudios.se
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