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Abstract

Computer graphics cameras lack the finite Depth of Field
(DOF) present in real world ones. This results in all objects
being rendered sharp regardless of their depth, reducing the
realism of the scene. On top of that, real-world DOF pro-
vides a depth cue, that helps the human visual system de-
code the elements of a scene. Several methods have been
proposed to render images with finite DOF, but these have
always implied an important trade-off between speed and
accuracy. In this paper, we introduce a novel anisotropic
diffusion Partial Differential Equation (PDE) that is applied
to the 2D image of the scene rendered with a pin-hole cam-
era. In this PDE, the amount of blurring on the 2D image
depends on the depth information of the 3D scene, present
in the Z-buffer. This equation is well posed, has existence
and uniqueness results, and it is a good approximation of
the optical phenomenon, without the visual artifacts and
depth inconsistencies present in other approaches. Because
both inputs to our algorithm are present at the graphics
card at every moment, we can run the processing entirely in
the GPU. This fact, coupled with the particular numerical
scheme chosen for our PDE, allows for real-time rendering
using a programmable graphics card.

1. Introduction

We can define the Depth of field (DOF) of a camera sys-
tem as the range of distances, in front of and behind the
point of focus, where the eye perceives the image to be
sharp. This applies also to the human eye, which, having
focused on a certain point, sees objects behind and in front
of that point with a certain amount of blur. This blur in-
creases as the objects are farther away from the focus dis-
tance. DOF is therefore an important aspect of visualization
if we want the images to look natural, since the natural im-
ages that we see have always a finite DOF (that of our eyes).
Also, a finite DOF provides the viewer with a useful depth
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cue which may be very helpful to interpret the geometry and
relative position of the objects of the scene [16].

On the other hand synthetic images, 2D images rendered
from a 3D scene, have infinite DOF, we see everything
sharp, in focus. This stems from the fact that the camera
model used for the rendering is the standard pin-hole cam-
era, in which the diameter of the lens is zero (hence the
name pin-hole.) Thus the rendering is very fast, at the ex-
pense of presenting everything in focus. Clearly, introduc-
ing the precise amount of (depth-dependent) blur to the im-
age would slow things down, and this is the issue with algo-
rithms for DOF rendering: they all have a very substantial
trade-off between speed and accuracy. Applications such
as video-games, interactive visualization or Virtual Reality
navigation all would require real-time DOF rendering. But
fast DOF algorithms (like those in [16] [13]) present se-
vere visual artifacts, like intensity leakage, in which blurred
objects leak intensity onto focused objects, or v.v. This is
very distracting to the viewer, since it provides an inconsis-
tent depth-cue. Conversely, accurate DOF algorithms (like
those in [7] [12] [2] [5]) are computationally intensive, at
most producing just a few frames per second, far from the
requirements of the applications mentioned above.

Our contribution is the following. We present a novel
anisotropic diffusion Partial Differential Equation (PDE).
Given a 2D image rendered from the 3D scene with a stan-
dard pin-hole camera, and the depth buffer of the scene,
this PDE performs accurate depth-dependent diffusion on
the image using the depth information present in the Z-
buffer. The numerical implementation of this equation (lo-
cal computations, iterations) is especially well suited to the
characteristics of the Cg programmable graphics hardware
language, and all the operations are performed entirely in
the Graphics Processing Unit (GPU), so we achieve DOF
in real-time. We give details on the mathematical proper-
ties of the PDE (which is well-posed, with existence and
uniqueness results), on the numerical scheme and on the Cg
implementation.



2. A Depth of Field model

In any camera model the precise focus occurs only at the
focusing distance, but the DOF, the apparent range of fo-
cus, can vary noticeably (depending on aperture size, focal
length, etc.)

Every 3D point at the focusing distance will map
(project) as a point onto the image plane. As the 3D point
moves out of focus (away or closer), it will map as a cir-
cle, called the circle of confusion (CoC). See figure 1. The
farther out of focus a 3D point is, the larger these circles
become. But close to the focusing distance, this CoC’s are
small, the human eye can not resolve them, and the image
appears to be sharp over a range of distances: this range is
the DOF [15].

The following equation (an expansion of the one in [15])
gives us the diameter ¢ of the CoC for a 3D point at a dis-
tance Z (the point’s depth):
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and Z; is the focal distance (the depth at which the image
is in perfect focus), F' is the focal length of the lens, and
n is the aperture number. Notice that when Z = Zy, the
diameter of the CoC is zero, as expected. Also, in a first
order approximation the CoC diameter varies linearly with
the absolute value of Z — Z¢, which is the difference in
depth between the 3D point and the focal plane.

Image plane

Figure 1. DOF model: A projects onto point A’,
while B projects onto a circle CoC(B’).

In the following section, we will show how to approx-
imate the CoC’s with an anisotropic diffusion process, in

which a depth-dependent blurring is performed on the 2D
image rendered with a pin-hole camera.

3. PDE’s and Anisotropic Diffusion

The use of PDE’s to perform diffusion in image process-
ing started with the seminal works of Koenderink [8] and
Witkin [20], in which the classical heat equation, a second
order PDE equivalent to Gaussian filtering, is used to obtain
a multi-scale representation of images.

Later, Perona and Malik’s [14] work on anisotropic dif-
fusion became one of the most influential papers in the area.
They proposed to replace Gaussian smoothing, equivalent
to isotropic diffusion via the heat flow, by a selective diffu-
sion that preserves edges. For a survey of PDE’s and image
processing see for instance [19].

3.1. The Heat Equation and Gaussian Kernels

The heat equation is a second order PDE:
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The n-th step of an explicit numerical implementation of
this equation can be written as:
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where ’g—Q is the time step.
It can be shown [4] that running one step of this equation

on the image I is equivalent to convolving I with a Gaussian
kernel of width h:
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Also, running N successive iteration steps is equivalent
(on limit) to convolving the initial I with a Gaussian kernel
of width V2N h :

IN =1°%G /557 (6)

So we see that we can always approximate Gaussian

blurring with a certain number of iteration steps of the heat

equation. It can be shown that 0.25 is the greatest value for

the time step that ensures stability of the equation [17], so

we choose %2 = 0.25. This choice and equation (6) give us
the following equivalence:
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where NN is the total number of iterations of the heat
equation that we must perform on the image I if we want to
achieve the same result as if convolving I with a Gaussian
kernel of width o.



3.2. Our equation

We can introduce anisotropy in the heat equation, by
means of a weighting function g(z,y, t):

oI

where g is a real-valued function between 0 and 1. For
instance, if g decreases with the norm of the gradient of
I, we get Perona and Malik’s edge-preserving anisotropic
diffusion [14].

Our goal is to perform anisotropic diffusion on I so that
at each point the amount of blurring corresponds to the
width of the CoC at that point. Eq. (1) says that, at each
point, the width of the CoC depends only on the depth of
that point. This tells us that we must choose g to be con-
stant in time, but how should it vary with depth?

Let us look at a simple example: a region of 3D space
with constant depth Z., say a square parallel to the image
plane. This square will of course project onto a square on
the image plane. Inside the square, the depth buffer will
have the constant value Z., so g must be constant as well,
and eq. (8) simplifies to:
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The n-th step of an explicit numerical implementation of
this equation can be written as:
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Also, for every point inside the square, the CoC will
have diameter o %, where Z; is the depth of the focal

plane. If, as before, we fix ’g—Q = 0.25, and we compare
eqs.(10) and (4), we get from equations (10), (1) and (6) the
following relationship:
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That is, this choice of g ensures that iteration of eq. (8)
performs on I the same effect as local convolution with a
Gaussian kernel the width of the CoC (notice that since the
CoC varies with (z, y), the kernel width does as well, so we
don’t have the same Gaussian kernel for the whole image I,
but one kernel for each point (z,y).)

From this, we choose for the general case our function g
to be

g o ( )? (11)
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where now « is a constant dependent on the camera pa-
rameters (and scaled so we keep g in the interval [0, 1]),

9(z,y) = a-( )’ (12)

Z(z,y) is the depth-buffer value at (z,y), and Zy is the
focal distance.

Therefore, we propose equation (8) with g defined in eq.
(12) as our PDE that performs depth-dependent blurring.
This blurring is the same that we would obtain by local
convolution with a Gaussian kernel the width of the CoC
at each point, so our equation approximates a finite DOF
effect on I.

This equation is well posed, and there always exists a
unique solution for it. See for instance [9].

3.3. Leakage prevention

Our equation does not cause intensity leakage, which is
one of the major problems in other fast approaches to DOF
such as [16] and [13]. As we mentioned above, the term
intensity leakage refers to the very distracting visual artifact
in which blurred objects leak intensity onto focused objects,
or v.v. In figure 2, obtained with the approach in [13], we
see that the foreground object leaks onto the background:
the whole foreground prism should be in focus, but its upper
boundary is not sharp, it appears blurred, while the lower
boundary and the inside of the same prism are indeed sharp.

In our equation, the weighting function g multiplies di-
rectly the gradient VI, and this is not the same as g multi-
plying the Laplacian AT:

or
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(we have omitted the variables x,y and t.) We see that

there is a second term, Vg - VI. This is what prevents the

intensities from leaking when we blur I, which will become

apparent when we look at the numerical implementation, in

the following subsection. If we dropped this term, we would
have a modified heat equation,

V. (gVI) = gAI +Vg-VI (13)
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in the spirit of both [16] and [13], and intensity leakage
would be unavoidable. Why? Consider the following ex-
ample: an image I where the left half (pixels (i, ) with
1 < i) corresponds to the foreground, in focus with g = 0,
and the right half (pixels (4, j) with i > i) corresponds to
the background, with g = 1, which should be blurred. With
eq. (14), blurring is performed isotropically with the Lapla-
cian A1, and afterward weighted by g. This means that any
pixel in the background with ¢ = ¢g will be blurred with
contribution from its neighbors with ¢ = i — 1, but this is
precisely the definition of intensity leakage: the pixels with
t = tg — 1 are in focus, so they can not contribute to the
blurring of any other pixel (their CoC’s have zero diameter.)

See figure 3 for a comparison of the effects of eqs. (8)
and (14). With our equation (bottom left image of the



figure) the foreground object has sharp boundaries, as it
should.

3.4. Numerical implementation

We have chosen an explicit numerical scheme for the im-
plementation of equation (8). As in [18], we can not use a
central differences approximation of the gradient nor the di-
vergence, because it would be an unconditionally unstable
scheme. We use instead backward differences for the diver-
gence and forward differences for the gradient:

VFuij = (Uig1,j = Wi, Uij1 — i)
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Wij = (Ui, Vi)

(these are just examples with generic scalar functions u
and v and vector w.)
The numerical scheme is then:
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where the subscripts are the pixel coordinates and the su-
perscript is the iteration step.

It is clear now why there is no leakage with this algo-
rithm: if a neighbor of pixel (i, ) has g = 0, then it will nor
be averaged.

It must be noted that, while this behavior is the correct
one when the foreground is in focus, it also implies that
if the background is in focus instead and the foreground
blurred then the foreground still has a sharp boundary. This
would produce an awkward result, since a blurred object
in the foreground should have blurred, not sharp, bound-
aries. This issue is easily solved by pre-processing g: we
perform some isotropic diffusion on the pixels of g with
depth lesser than the focal distance. This will smooth the
sharp jumps in depth that happen along the boundaries of
the foreground objects, while keeping sharp the boundaries
at the focal plane. This pre-processing step is extremely
fast, as we will see in the following section.

4. Programmable Graphics Hardware

In the last few years there have been a number of works
that exploit the speed capabilities of graphics hardware to
accelerate the solution of diffusion equations [6] [3] [1].
This is the logical conclusion of GPU speed growing faster
than CPU speed: the graphics subsystem can today act as
a geometry / image processing subsystem outperforming
the CPU manyfold. GPUs are also cost-effective, present
in all new PC’s, and not tied to any specific operating sys-
tem [6]. As a downside, GPUs are traditionally complex to
code for, as several competing standards exist. This prob-
lem has been greatly reduced with the introduction of high-
level programming languages for GPUs. Cg [10] is one of

the best-known examples, which has been used in the im-
plementation phase of our algorithm. We have decomposed
our equation processing into a series of pixel shaders, which
perform the Anisotropic Diffusion inside the GPU.

Our algorithm is very well suited for such an approach.
First, the process is highly parallel: each pixel in the scene
requires similar processing. Second, all data required for
the actual processing can be stored in GPU memory, thus
reducing drastically the bus traffic and increasing perfor-
mance. Recalling from previous sections, all we need as in-
puts to our algorithm are the 2D image (or 3D scene saved
as a texture) and the depth-buffer of the scene. Both inputs
are present at every moment in the GPU, which allows for
this algorithm to run entirely in the GPU. This is very ade-
quate, since communication with the CPU through de data
bus would hinder performance.

We use three internal textures, the same size of the im-
age I: one stores g, which is fixed through all the iterations,
while the other two textures are used to update I, and they
change at every iteration. This makes the GPU memory re-
quirements for our method reasonable. We found out that
the bottleneck of the actual processing is not in the compu-
tations, but in the texture-lookup operations. The numeri-
cal scheme in (16) would require, in a direct implementa-
tion in Cg, eight texture-lookups: five for the current pixel
I(i,j) and its four neighbors, three for g; ;, gi—1,;, and
gi,j—1- When we coded the three values g; ;, g;—1,;, and
gi,j—1 in the same 32-bit number (by coding each value in 8
bits, leaving the alpha-channel unused) and stored this num-
ber in g; ;, then we could access the three values with just
one texture-lookup, and performance was increased almost
30%.

The fact that texture operations are the bottleneck ex-
plains why our algorithm can achieve real-time perfor-
mance, while a direct computation of the Gaussian blurring
is at present far from real-time applicability. Let us only
count the number of texture-lookups required in both ap-
proaches in order to achieve the same result. In our algo-
rithm, we require 6N lookups, where N is the number of
iteration steps. A direct computation of Gaussian blurring
would imply, for each pixel, adding the contributions of its
neighbors (weighted by their respective g). If we choose 20
as the radius of the neighborhood (so it will contain most
of the kernel,) there will approximately be 4IIo2 pixels in
it. For each of those pixels, we will make two lookups, one
for I and one for g, so the total number of lookups in this
approach will be 8To2 . Recalling eq. (7), which relates N
and o, we get that with our algorithm we make just % of
the number of lookups that direct Gaussian blurring would
require. Hence our method will approximately be one order
of magnitude faster than direct Gaussian blurring.

As for the pre-processing of g which we mentioned at the
end of the previous section, it is done in the following way.
Given the original depth-buffer Z we compute g, call it g1,



from equation (12). ! Next we make a copy of g1, call it g2,
in which we threshold all the values corresponding to depths
greater than that of the focal plane. We isotropically blur g2
by averaging reduced scale versions of it (a technique sim-
ilar to mip-mapping [11]). Then we combine g1 and g2 to
obtain the g that we will use: the idea is to choose the value
in g2 for pixels in the front of the focal plane, and g1 for
pixels in the back. This combination is done non-linearly,
to achieve a smoother blending. This pre-processing step is
extremely fast, since the isotropic diffusion is actually per-
formed by power of two scaling. Figure 4 shows g1 and the
final g obtained.”

5. Results

Table 1 shows the performance of our algorithm in
frames per second (fps) for different values of screen res-
olution and number of iterations. We used a NVIDIA
GEFORCE FX 5950 Ultra graphics card. We see for in-
stance that, at TV-resolution (640x480), we get 21.7 fps
with 10 iterations. This number of iteration steps is usually
enough to achieve a realistic DOF effect. We can always in-
crease the blurring, but it will be at the expense of the frame
rate, as one would expect.

Table 1. Performance in frames per second as a
function of screen resolution R and number of it-
erations N.

R/N 5 10 15 20
640x480 | 35.7 | 21.7 | 154 | 119
800x600 | 21.5 | 134 | 9.7 7.7
1024x768 | 13.5 9.0 6.0 4.9

Figure 5 shows details of several screen-shots of a real-
time demo of our algorithm, where IV is fixed at 20 itera-
tions per frame and the screen resolution is 6402480. No-
tice how there are no visual artifacts of any kind.

6. Conclusion and Future Work

In this article, we have introduced a novel PDE that ap-
proximates finite DOF on synthetic images by performing
depth-dependent anisotropic blurring. This blurring is per-
formed on a 2D image rendered with a pin-hole camera
from a 3D scene. The inputs are the 2D image and the
depth-buffer of the scene, which allows for this algorithm
to run entirely in the GPU. The PDE is mathematically well
behaved, with existence and uniqueness of solutions. Its
numerical implementation is accurate, unlike previous real-
time approaches to this same problem. Crucially, it is well

1 Actually, we use a linearized version of the equation, which introduces
no visible error.

suited to the parallel architecture of the GPU, allowing for
real-time performance.

Currently we continue to optimize the performance of
our method, mainly by looking for sources for speed-ups in
the Cg code. In the future we will address the transparency
of scene objects, which at present we are not taking into
account.

GPU-based PDE solutions such as the one exposed in
this paper show great potential for the future: effects like
motion-blur, halos, and many others can be simulated using
variants of our core algorithm. Still, these effects put a lot
of stress on certain components of the GPU. We have seen
how both the texture lookup units and, more broadly, the
pixel shader processor, need to increase their computational
power in order to allow for a broader spectrum of real-time
cinematic effects.
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Figure 5. Examples of our DOF algorithm: focus on front (top), focus on 2"¢ row of cars (middle), focus on rear
(bottom.)



