

“Next Gen” Effects ?

CryEngine 2: Shading Overview

• Support shader model 2.0, up to 4.0

• Completely dynamic lighting and shadows

• Up to 4 point light sources per-pass

• Wide range of known and DIY shading models

• Some other fancy features

• Deferred mix with multi-pass rendering approach

• Average of 2K drawcalls per frame (~2M tris)

Water and Underwater Rendering

• Intro water rendering video

Water and Underwater Rendering

• Rendering believable looking water

• Underwater light-scattering [1]

• Water surface animation & tessellation

• Reflections/Refraction

• Shore/Foam

• Caustics and God-rays

• Camera and objects interaction with water

• Particles

• How to make all this efficiently in a very complex

and open ended world in a game like Crysis ?

No more flat water !

• 3D waves

• Used statistical Tessendorf animation model [2]

• Computed on CPU for a 64x64 grid

• Upload results into a FP32 texture

• Vertex displacement on GPU

• Lower HW specs used sin waves sum

• Additionally 4 moving normals maps layers

Surface Tessellation

Screen Space Grid Projection

Extreme detail nearby

Problems
Screen edges

Aliasing at distance

Dropped this approach in the end

Surface Tessellation

Camera aligned grid

Keep detail nearby and in front of camera

Problems

Camera roll

Balancing nearby VS far away detail

Kept this approach in the end

Surface from a top perspective

Physics Interaction

• CPU animation is shared with Physics/Game

• For lowspec machines, did same “math” as in

vertex shader on CPU

• Physics samples best water plane fitting object

Reflection

Per frame, we had an avg of 2K drawcalls (~ 2M tris)

• This really needed to be cheap – and look good

• Problem: Reflections added about 1500 drawcalls

• Draw calls minimization

• Final average of 300 drawcalls for reflections

• Total internal reflection also simulated

• Half screen resolution RT

Reflection Update Trickery

Update Dependencies

• Time

• Camera orientation/position difference from

previous camera orientation/position

• Surface visibility ratio using HW occlusion queries

• Multi-GPU systems need extra care to avoid out of

sync reflection texture

Anisotropic Reflection

• Blur final reflection texture vertically

• Also helps minimizing reflection aliasing

Refraction

• No need to render scene again [3]

• Use current back-buffer as input texture

• Mask out everything above water surface

• Water depth > World depth = leaking

• Don’t allow refraction texture offset for this case

• Chromatic dispersion approx. for interesting look

• Scaled offset for R, G and B differently

Refraction Masking

Chromatic Dispersion

Procedural Caustics

• Extra rendering pass, can handle

opaque/transparent

• Based on real sun direction projection

• Procedural composed using 3 layers

• Chromatic dispersion approximation

• Darken slightly to simulate wet surface

Procedural Caustics

Shore and Foam

• Soft water intersection

• Shore blended based on surface depth distance to

world depth

• Waves foam blended based on current height

distance to maximum height

• Foam is composed of 2 moving layers with offsets

perturbation by water bump

• Acceptable quality

Shore and Foam

Underwater God-Rays [4]

• Essentially the same procedural caustics shader

• Based on real sun direction projection

• Projected into multiple planes in front of camera

• Rendered into a 4x smaller than screen RT

• Finally add to frame-buffer

Light Scattering + Caustics + God-Rays

(exaggerated for picture)

Underwater God-Rays

Camera/Particles Interaction

• How to handle case where camera intersects an

animated water surface ?

• Water droplets effect when coming out of water

• When inside water used a subtle distortion

• Water particles similar to soft-particles

Things for the Future

• Rolling waves didn’t made into final game

• Special animated water decal geometry

• Water splashes

• Surface interaction with shoreline

• Dynamic surface interaction

• Maybe in nearby future project ?

Frozen Surfaces

• Intro frozen surfaces video

Frozen Surfaces

• Huge Headache

• Haven’t found previous research on the subject

• Unique Alien Frozen World: How to make it ?

• Should it look realistic ?

• Or an “artistic” flash frozen world ?

• Make everything Frozen ?

• Dynamically ?

• Custom frozen assets ?

• Reuse assets ?

• Took us 4 iterations until final result

Lessons learned

Final iteration

• Main focus was to make it visually interesting

• Used real world images as reference this time

• Minimize artist amount of work as much as

possible

• Impossible to make every single kind of object

look realistically frozen (and good) with a single

unified approach

• 1 week before hitting feature lock/alpha (gulp)

Putting all together

• Accumulated snow on top

• Blend in snow depending on WS/OS normal z

• Frozen water droplets accumulated on side

• 2 layers using different uv and offset bump scales to give

impression of volume

• 3D Perlin noise used for blending variation

• 3 octaves and offsets warping to avoid repetitive patterns

• Glittering

• Used a 2D texture with random noise vectors

• Pow(saturate(dot(noise, viewVector), big value)

• If result > threshold, multiply by big value for hdr to kick in

Procedural Frozen

• Reused assets

• Dynamic freezing possibility and with nice

transition

• Didn’t gave artists more control than required

• Artists just press button to enable frozen

• Relatively cheap, rendering cost wise

• Visually interesting results

• Only looks believable under good lighting

conditions

Post-Effects

• Intro post-effects video

Post-Effects Overview

Post Effects Mantra:

• Final rendering “make-up”

• Minimal aliasing (for very-hi specs)

• Never sacrifice quality over speed

• Unless you’re doing really crazy expensive stuff !

• Make it as subtle as possible

• But not less - or else average gamer will not notice it

Camera Motion Blur (CMB)

LDR

No bright streaks

Washed out details

HDR

Screen-space velocities

• Render a sphere around camera

• Use previous/current camera transformation to

compute delta vector

• Lerp between previous/current transformation by a

shutter speed ratio (n / frame delta), to get correct

previous camera matrix

• From previous/current positions compute velocity vector

• Can already accumulate N samples along velocity

direction

• But will get constant blurring everywhere

Velocity Mask

• Used depth to generate velocity mask

• We let camera rotation override this mask

• Depth is used to mask out nearby geometry

• If current pixel depth < nearby threshold write 0

• Value used for blending out blur from first person

arms/weapons

• Velocity mask is used later as a scale for motion

blurring velocity offsets

• Blurring amount scales at distance now

CMB Vertex Shader Sample

vPos.xyz += vWorldViewPos.xyz;

float4 vNewPos = mul(mViewProj, vPos);

float4 vPrevPos = mul(mViewProjPrev, vPos);

OUT.HPosition = vNewPos;

OUT.vCurr = HPosToScreenTC(vNewPos);

OUT.vPrev = HPosToScreenTC(vPrevPos);

CMB Pixel Shader Sample

half4 cMidCurr = tex2Dproj(screenMap, IN.vCurr);

half fDepth = tex2Dproj(depthMap,IN.vCurr).x*NearFarClipDist.y;

float2 vStart = IN.vCurr.xy/IN.vCurr.w;

float2 vPrev = (IN.vPrev.xy/IN.vVPrev.w) * fScale;

float2 vCurr = vStart * fScale;

float2 vStep = vPrev - vCurr;

float4 accum = 0;

[unroll]

for(float s = -1.0; s < 1.0 ; s += fWeightStep) {

 float2 tcFinal = vCurr.xy - vStep.xy * s;

 // Apply depth scaling/masking

 half fDepthMask = tex2D(screenMap, tcFinal).w;

 tcFinal += vStep.xy * (s - s * fDepthMask);

 accum += tex2D(screenMap, tcFinal);

}

accum *= fWeight;

// Remove remaining scene bleeding from 1st player hands

OUT.Color = lerp(cMidCurr, accum, saturate(fDepth-1.0));

Improving quality

• Iterative sampling approach

• First pass uses 8 samples

• Ping-pong results

• Second pass uses blurred results, this results in 8

* 8 samples (virtually 64)

• 3rd = 512 samples, 4th = 4096, etc

• High quality at relatively low cost

Iterative quality improve

Optimization strategies

• If no movement skip camera motion blur entirely

• Compare previous camera transformation with current

• Estimate required sample count based on camera

translation/orientation velocity

• If sample count below certain threshold, skip

• Adjust pass/sample count accordingly

• This gave a nice performance boost

• Average case at 1280x1024 runs at ~ 1 ms on a G80

Object Motion Blur (OMB)

LDR

Bright streaks gone

Washed out details

HDR

Bright Streaks

Sharper Details

DX9 HW Skinning limitation

• 256 vertex constant registers limit

• Our characters have an average of 70 bones per

drawcall

• Each bone uses 2 registers = 140 registers

• For motion blur we need previous frame bones

transformations

• 2 x 140 = 280 registers, bummer..

• Decided for DX10 only solution

Step 1: Velocity pass

• Render screen space velocity, surface depth and

instance ID into a FP16 RT

• If no movement, skip rigid/skinned geometry
• Compare previous transformation matrix with current

• Compare previous bone transformations with current

• If per-pixel velocity below certain threshold write 0
to RT

• Can use this data for optimizing further

Why dilation needed ?

Step 2: Velocity Mask

• Used a 8x smaller render target

• Apply Gaussian blur to velocity length

• Result is a reasonable fast estimation of screen

space needed for dilation and motion blurring

• Mask is used to efficiently skip pixels during

dilation passes

Step 3: Velocity Dilation

• Edge dilation

• Done using separated vertical and horizontal

offsets

• 4 passes total (2 for horizontal, 2 for vertical)

• If center offset has velocity or velocity mask is 0

skip processing entirely

• Dilate if world depth > surface depth

Dilation shader sample

float4 vCenterVZID = tex2D(tex0, tc.xy);

float fCenterDepth = GetResampledDepth(tex1, tc.xy);

float fOffsetScale = tex2D(tex2, tc.xy).x;

if(fOffsetScale == 0 || dot(vCenterVZID.xy, vCenterVZID.xy)){

 OUT.Color = float4(vCenterVZID.xyzw) ;

 return OUT;

}

[unroll]

for(int n = 0; n < nOffsets; n++) {

 float2 tcLookup = tc.xy + vOffsets[n].xy *vScrSizeRecip;

 float4 vCurrVZID = tex2Dlod(tex0, float4(tcLookup , 0, 0));

 float fDepthCmp = saturate(fCenterDepth- vCurrVZID.z);

 fDepthCmp *= dot(vCurrVZID.xy, vCurrVZID.xy);

 fDepthCmp *= Dilated.z == 0;

 if(fDepthCmp)

 Dilated = vCurrVZID;

}

Velocity Dilation

Original Step 1 Step 2

Final Step: Motion Blurring

• Accumulate N samples along velocity direction

• Can use surface ID to avoid leaking

• Extra lookup..

• Clamp velocity to acceptable range

• Very important to avoid ugly results, especially with jerky

animations

• Divide accumulated results by sample count and

lerp between blurred/non blurred

• Using alpha channel blend mask

OMB Pixel Shader Sample

float4 cScreen = tex2Dlod(tex0, float4(tc.xy, 0, 0));

float4 cVelocity = tex2Dlod(tex1, float4(tc.xy, 0, 0));

OUT.Color = cScreen;

if(dot(cVelocity.xy, cVelocity.xy) < fThreshold)

 return OUT;

float4 cAccum = 0;

float fLen = length(cVelocity.xy);

if(fLen) cVelocity.xy /= fLen;

cVelocity.xy *= min(fLen, vMaxRange) //Clamp velocity to MaxRange

[unroll]

for(float i = 0; i < nSamples; i++) {

 float2 tcMB = cVelocity * ((i * fRecipSamples)-0.5) + tc;

 float4 cCurr = tex2Dlod(tex0, float4(tcMB, 0, 0));

 cAccum += float4(cCurr.xyz, saturate(10000 * cCurr.w));

}

if(cAccum.w) { // Blend with scene

 cAccum *= fRecipSamples;

 OUT.Color = lerp(cScreen, cAccum, saturate(cAccum.w * 2));

}

Blend Mask

Blend with scene

Object Motion Blur

• Object motion blur with per-pixel dilation

 Not perfect, but good quality results for most cases

 Geometry independent

 Problematic with alpha blending

• Future improvements / challenges

 Self-motion blurring

 Multiple overlapping geometry + motion blurring

 Could use adaptive sample count for blurring

Sun Shafts [5]

aka Crepuscular Rays/God Rays/Sun beams/Ropes of Maui…

Screen Space Sun Shafts

• Generate depth mask

• Mask = 1 - normalized scene depth

• Perform local radial blur on depth mask

• Compute sun position in screen space

• Blur vector = sun position - current pixel position

• Iterative quality improvement

• Used 3 passes (virtually = 512 samples)

• RGB = sun-shafts, A = vol. fog shadow aprox

• Compose with scene

• Sun-shafts = additive blending

• Fog-shadows = soft-blend [5]

Depth Mask Radial Blurring

Depth Mask 8 samples 64 samples 512 samples

Sun Shafts: Results

Color Grading

• Artist control for final image touches

• Depending on “time of day” in game

• Night mood != Day mood, etc

• Usual saturation, contrast, brightness controls and

color levels like in Far Cry [6]

• Image sharpening through extrapolation [9]

• Selective color correction

• Limited to a single color correction

• Photo Filter

• Grain filter

Image Sharpening

Selective Color Correction

• Color range based on Euclidian distance

• ColorRange = saturate(1 - length(src - col.xyz));

• Color correction done in CMYK color space [8]

• c = lerp(c, clamp(c + dst_c, -1, 1), ColorRange);

• Finally blend between original and correct color

• Orig =lerp(Orig, CMYKtoRGB(c), ColorRange);

Photo Filter

• Blend entire image into a different color mood

• Artist defines “mood color”

• cMood = lerp(0, cMood, saturate(fLum * 2.0));

• cMood = lerp(cMood, 1, saturate(fLum - 0.5) * 2.0);

• Final color is a blend between mood color and

backbuffer based on luminance and user ratio

• final= lerp(cScreen, cMood , saturate(fLum * fRatio));

Conclusion

• Awesome time to be working in real time computer

graphics

• Hollywood movie image quality still far away

• Some challenges before we can reach it

• Need much more GPU power (Crysis is GPU bound)

• Order independent alpha blending – for real world cases

• Good reflection/refraction

We still need to get rid of aliasing – Everywhere

Special Thanks

• To entire Crytek team

• All work presented here wouldn’t have been

possible without your support

References

• [1] Wenzel, “Real time atmospheric effects”, GDC 2007

• [2] Tessendorf, “Simulating Ocean Water”, 1999

• [3] Sousa, “Generic Refraction Simulation”, Gpu Gems 2, 2004

• [4] Jensen + et al, “Deep Water Animation and Rendering”,

2001

• [5] Nishita + et al, “A Fast Rendering Method for Shafts of Light

in Outdoor Scene”, 2006

• [6] Gruschel, “Blend Modes”, 2006

• [7] Bjorke, “Color Controls”, GPU Gems 1

• [8] Green, “OpenGL Shader Tricks”, 2003

• [9] Ford + et al, “Colour Space Conversions”, 1998

• [10] Haerberli + et al, “Image processing by Interpolation and

Extrapolation”, 1994

Questions ?

Tiago@Crytek.de

Crytek is hiring !

http://www.crytek.com/jobs/

http://www.crytek.com/jobs/

