
Beyond Programmable Shading Course
ACM SIGGRAPH 2010

Deferred Rendering for Current and

Future Rendering Pipelines

Andrew Lauritzen

Advanced Rendering Technology (ART)

Intel Corporation

Overview

• Forward shading

• Deferred shading and lighting

• Tile-based deferred shading

• Deferred multi-sample anti-aliasing (MSAA)

2 Beyond Programmable Shading, SIGGRAPH 2010

Forward Shading

• Do everything we need to shade a pixel

– for each light

• Shadow attenuation (sampling shadow maps)

• Distance attenuation

• Evaluate lighting and accumulate

• Multi-pass requires resubmitting scene geometry

– Not a scalable solution

Beyond Programmable Shading, SIGGRAPH 2010 3

Forward Shading Problems

• Ineffective light culling

– Object space at best

– Trade-off with shader permutations/batching

• Memory footprint of all inputs

– Everything must be resident at the same time (!)

• Shading small triangles is inefficient

– Covered earlier in this course: [Fatahalian 2010]

Beyond Programmable Shading, SIGGRAPH 2010 4

Conventional Deferred Shading

• Store lighting inputs in memory (G-buffer)

– for each light

• Use rasterizer to scatter light volume and cull

• Read lighting inputs from G-buffer

• Compute lighting

• Accumulate lighting with additive blending

• Reorders computation to extract coherence

Beyond Programmable Shading, SIGGRAPH 2010 5

Modern Implementation

• Cull with screen-aligned quads

– Cover light extents with axis-aligned bounding box

• Full light meshes (spheres, cones) are generally overkill

• Can use oriented bounding box for narrow spot lights

– Use conservative single-direction depth test

– Two-pass stencil is more expensive than it is worth

– Depth bounds test on some hardware, but not batch-friendly

Beyond Programmable Shading, SIGGRAPH 2010 6

Lit Scene (256 Point Lights)

Beyond Programmable Shading, SIGGRAPH 2010 7

Quad-Based Light Culling

Beyond Programmable Shading, SIGGRAPH 2010 8

Deferred Shading Problems

• Bandwidth overhead when lights overlap

– for each light

• Use rasterizer to scatter light volume and cull

• Read lighting inputs from G-buffer overhead

• Compute lighting

• Accumulate lighting with additive blending overhead

• Not doing enough work to amortize overhead

Beyond Programmable Shading, SIGGRAPH 2010 9

Improving Deferred Shading

• Reduce G-buffer overhead

– Access fewer things inside the light loop

– Deferred lighting / light pre-pass

• Amortize overhead

– Group overlapping lights and process them together

– Tile-based deferred shading

Beyond Programmable Shading, SIGGRAPH 2010 10

Deferred Lighting / Light Pre-Pass

• Goal: reduce G-buffer overhead

• Split diffuse and specular terms

– Common concession is monochromatic specular

• Factor out constant terms from summation

– Albedo, specular amount, etc.

• Sum inner terms over all lights

Beyond Programmable Shading, SIGGRAPH 2010 11

Deferred Lighting / Light Pre-Pass

• Resolve pass combines factored components

– Still best to store all terms in G-buffer up front

– Better SIMD efficiency

• Incremental improvement for some hardware

– Relies on pre-factoring lighting functions

– Ability to vary resolve pass is not particularly useful

• See [Hoffman 2009] and [Stone 2009]

Beyond Programmable Shading, SIGGRAPH 2010 12

Tile-Based Deferred Shading

• Goal: amortize overhead

• Use screen tiles to group lights

– Use tight tile frusta to cull non-intersecting lights

• Reduces number of lights to consider

– Read G-buffer once and evaluate all relevant lights

• Reduces bandwidth of overlapping lights

• See [Andersson 2009] for more details

Beyond Programmable Shading, SIGGRAPH 2010 13

Lit Scene (1024 Point Lights)

Beyond Programmable Shading, SIGGRAPH 2010 14

Tile-Based Light Culling

Beyond Programmable Shading, SIGGRAPH 2010 15

Quad-Based Lighting Culling

Beyond Programmable Shading, SIGGRAPH 2010 16

1

2

4

8

16

16 32 64 128 256 512 1024

Fr
am

e
 T

im
e

 (
m

s)

Number of Point Lights

Quad (ATI 5870)

Quad (NVIDIA 480)

Tiled (NVIDIA 480)

Tiled (ATI 5870)

Light Culling Only at 1080p

Beyond Programmable Shading, SIGGRAPH 2010 17

Slope ~ 0.5 µs / light

Slope ~ 7 µs / light

Tile setup dominates

1

2

4

8

16

32

16 32 64 128 256 512 1024

Fr
am

e
 T

im
e

 (
m

s)

Number of Point Lights

Deferred Shading (NVIDIA 480)

Deferred Shading (ATI 5870)

Deferred Lighting (ATI 5870)

Deferred Lighting (NVIDIA 480)

Tiled (NVIDIA 480)

Tiled (ATI 5870)

Total Performance at 1080p

Beyond Programmable Shading, SIGGRAPH 2010 18

Deferred lighting slightly faster, but trends similarly

Slope ~ 4 µs / light

Slope ~ 20 µs / light

Few lights overlap

Anti-aliasing

• Multi-sampling with deferred rendering requires

some work

– Regular G-buffer couples visibility and shading

• Handle multi-frequency shading in user space

– Store G-buffer at sample frequency

– Only apply per-sample shading where necessary

– Offers additional flexibility over forward rendering

Beyond Programmable Shading, SIGGRAPH 2010 19

Identifying Edges

• Forward MSAA causes redundant work

– It applies to all triangle edges, even for continuous,

tessellated surfaces

• Want to find surface discontinuities

– Compare sample depths to depth derivatives

– Compare (shading) normal deviation over samples

Beyond Programmable Shading, SIGGRAPH 2010 20

Per-Sample Shading Visualization

Beyond Programmable Shading, SIGGRAPH 2010 21

MSAA with Quad-Based Methods

• Mark pixels for per-sample shading

– Stencil still faster than branching on most hardware

– Probably gets scheduled better

• Shade in two passes: per-pixel and per-sample

– Unfortunately, duplicates culling work

– Scheduling is still a problem

Beyond Programmable Shading, SIGGRAPH 2010 22

Per-Sample Scheduling

Beyond Programmable Shading, SIGGRAPH 2010 23

• Lack of spatial locality causes hardware

scheduling inefficiency

MSAA with Tile-Based Methods

• Handle per-pixel and per-sample in one pass

– Avoids duplicate culling work

– Can use branching, but incurs scheduling problems

– Instead, reschedule per-sample pixels

• Shade sample 0 for the whole tile

• Pack a list of pixels that require per-sample shading

• Redistribute threads to process additional samples

• Scatter per-sample shaded results

Beyond Programmable Shading, SIGGRAPH 2010 24

Tile-Based MSAA at 1080p, 1024 Lights

Beyond Programmable Shading, SIGGRAPH 2010 25

0

5

10

15

20

25

30

35

Crytek Sponza
(ATI 5870)

2009 Game
(ATI 5870)

Crytek Sponza
(NVIDIA 480)

2009 Game
(NVIDIA 480)

Fr
am

e
 T

im
e

 (
m

s)

No MSAA

4x MSAA (Branching)

4x MSAA (Packed)

1

2

4

8

16

32

64

16 32 64 128 256 512 1024

Fr
am

e
 T

im
e

 (
m

s)

Number of Point Lights

Deferred Shading (ATI 5870)

Deferred Lighting (ATI 5870)

Deferred Shading (NVIDIA 480)

Deferred Lighting (NVIDIA 480)

Tiled (ATI 5870)

Tiled (NVIDIA 480)

4x MSAA Performance at 1080p

Beyond Programmable Shading, SIGGRAPH 2010 26

Slope ~ 5 µs / light

Slope ~ 35 µs / light

Tiled takes less of a hit from MSAA

Deferred lighting even less compelling

Conclusions

• Deferred shading is a useful rendering tool

– Decouples shading from visibility

– Allows efficient user-space scheduling and culling

• Tile-based methods win going forward

– Fastest and most flexible

– Enable efficient MSAA

Beyond Programmable Shading, SIGGRAPH 2010 27

Future Work

• Hierarchical light culling

– Straightforward but would need lots of small lights

• Improve MSAA memory usage

– Irregular/compressed sample storage?

– Revisit binning pipelines?

– Sacrifice higher resolutions for better AA?

Beyond Programmable Shading, SIGGRAPH 2010 28

Acknowledgements

• Microsoft and Crytek for the scene assets

• Johan Andersson from DICE

• Craig Kolb, Matt Pharr, and others in the

Advanced Rendering Technology team at Intel

• Nico Galoppo, Anupreet Kalra and Mike Burrows

from Intel

Beyond Programmable Shading, SIGGRAPH 2010 29

References

• [Andersson 2009] Johan Andersson, “Parallel Graphics in Frostbite - Current &

Future”, http://s09.idav.ucdavis.edu/

• [Fatahalian 2010] Kayvon Fatahalian, “Evolving the Direct3D Pipeline for Real-Time

Micropolygon Rendering”, http://bps10.idav.ucdavis.edu/

• [Hoffman 2009] Naty Hoffman, “Deferred Lighting Approaches”,

http://www.realtimerendering.com/blog/deferred-lighting-approaches/

• [Stone 2009] Adrian Stone, “Deferred Shading Shines. Deferred Lighting? Not So

Much.”, http://gameangst.com/?p=141

Beyond Programmable Shading, SIGGRAPH 2010 30

Questions?

• Full source and demo available at:

– http://visual-computing.intel-

research.net/art/publications/deferred_rendering/

Beyond Programmable Shading, SIGGRAPH 2010 31

Backup

Beyond Programmable Shading, SIGGRAPH 2010 32

Quad-Based Light Culling

• Accumulate many lights per draw call

– Render one point per light

– Vertex shader computes quad bounds for light

– Geometry shader expands into two triangles (quad)

– Pixel shader reads G-buffer and evaluates lighting

Beyond Programmable Shading, SIGGRAPH 2010 33

Tile-Based Deferred Lighting?

• Can do deferred lighting with tiling...

– Not usually worth sacrificing the flexibility

– Bandwidth already minimized

– Additional resolve pass can make it slower overall

• Exception: hardware considerations

– SPU lighting on Playstation 3

• Moving less data across the bus can be an overall win

Beyond Programmable Shading, SIGGRAPH 2010 34

