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Overview 

• Forward shading 

• Deferred shading and lighting 

• Tile-based deferred shading 

• Deferred multi-sample anti-aliasing (MSAA) 
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Forward Shading 

• Do everything we need to shade a pixel 

– for each light 

• Shadow attenuation (sampling shadow maps) 

• Distance attenuation 

• Evaluate lighting and accumulate 

• Multi-pass requires resubmitting scene geometry 

– Not a scalable solution 
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Forward Shading Problems 

• Ineffective light culling 

– Object space at best 

– Trade-off with shader permutations/batching 

• Memory footprint of all inputs 

– Everything must be resident at the same time (!) 

• Shading small triangles is inefficient 

– Covered earlier in this course: [Fatahalian 2010] 

Beyond Programmable Shading, SIGGRAPH 2010 4 



Conventional Deferred Shading 

• Store lighting inputs in memory (G-buffer) 

– for each light 

• Use rasterizer to scatter light volume and cull 

• Read lighting inputs from G-buffer 

• Compute lighting 

• Accumulate lighting with additive blending 

• Reorders computation to extract coherence 
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Modern Implementation 

• Cull with screen-aligned quads 

– Cover light extents with axis-aligned bounding box 

• Full light meshes (spheres, cones) are generally overkill 

• Can use oriented bounding box for narrow spot lights 

– Use conservative single-direction depth test 

– Two-pass stencil is more expensive than it is worth 

– Depth bounds test on some hardware, but not batch-friendly 
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Lit Scene (256 Point Lights) 
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Quad-Based Light Culling 
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Deferred Shading Problems 

• Bandwidth overhead when lights overlap 

– for each light 

• Use rasterizer to scatter light volume and cull 

• Read lighting inputs from G-buffer  overhead 

• Compute lighting 

• Accumulate lighting with additive blending  overhead 

• Not doing enough work to amortize overhead 
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Improving Deferred Shading 

• Reduce G-buffer overhead 

– Access fewer things inside the light loop 

– Deferred lighting / light pre-pass 

• Amortize overhead 

– Group overlapping lights and process them together 

– Tile-based deferred shading 

Beyond Programmable Shading, SIGGRAPH 2010 10 



Deferred Lighting / Light Pre-Pass 

• Goal: reduce G-buffer overhead 

• Split diffuse and specular terms 

– Common concession is monochromatic specular 

• Factor out constant terms from summation 

– Albedo, specular amount, etc. 

• Sum inner terms over all lights 
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Deferred Lighting / Light Pre-Pass 

• Resolve pass combines factored components 

– Still best to store all terms in G-buffer up front 

– Better SIMD efficiency 

• Incremental improvement for some hardware 

– Relies on pre-factoring lighting functions 

– Ability to vary resolve pass is not particularly useful 

• See [Hoffman 2009] and [Stone 2009] 
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Tile-Based Deferred Shading 

• Goal: amortize overhead 

• Use screen tiles to group lights 

– Use tight tile frusta to cull non-intersecting lights 

• Reduces number of lights to consider 

– Read G-buffer once and evaluate all relevant lights 

• Reduces bandwidth of overlapping lights 

• See [Andersson 2009] for more details 
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Lit Scene (1024 Point Lights) 
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Tile-Based Light Culling 
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Quad-Based Lighting Culling 
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Slope ~ 0.5 µs / light 

Slope ~ 7 µs / light 

Tile setup dominates 
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Deferred lighting slightly faster, but trends similarly 

Slope ~ 4 µs / light 

Slope ~ 20 µs / light 

Few lights overlap 



Anti-aliasing 

• Multi-sampling with deferred rendering requires 

some work 

– Regular G-buffer couples visibility and shading 

• Handle multi-frequency shading in user space 

– Store G-buffer at sample frequency 

– Only apply per-sample shading where necessary 

– Offers additional flexibility over forward rendering 
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Identifying Edges 

• Forward MSAA causes redundant work 

– It applies to all triangle edges, even for continuous, 

tessellated surfaces 

• Want to find surface discontinuities 

– Compare sample depths to depth derivatives 

– Compare (shading) normal deviation over samples 
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Per-Sample Shading Visualization 
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MSAA with Quad-Based Methods 

• Mark pixels for per-sample shading 

– Stencil still faster than branching on most hardware 

– Probably gets scheduled better 

• Shade in two passes: per-pixel and per-sample 

– Unfortunately, duplicates culling work 

– Scheduling is still a problem 
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Per-Sample Scheduling 
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• Lack of spatial locality causes hardware 

scheduling inefficiency 



MSAA with Tile-Based Methods 

• Handle per-pixel and per-sample in one pass 

– Avoids duplicate culling work 

– Can use branching, but incurs scheduling problems 

– Instead, reschedule per-sample pixels 

• Shade sample 0 for the whole tile 

• Pack a list of pixels that require per-sample shading 

• Redistribute threads to process additional samples 

• Scatter per-sample shaded results 
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Tile-Based MSAA at 1080p, 1024 Lights 

Beyond Programmable Shading, SIGGRAPH 2010 25 

0 

5 

10 

15 

20 

25 

30 

35 

Crytek Sponza 
(ATI 5870) 

2009 Game 
(ATI 5870) 

Crytek Sponza 
(NVIDIA 480) 

2009 Game 
(NVIDIA 480) 

Fr
am

e
 T

im
e

 (
m

s)
 

No MSAA 

4x MSAA (Branching) 

4x MSAA (Packed) 



1 

2 

4 

8 

16 

32 

64 

16 32 64 128 256 512 1024 

Fr
am

e
 T

im
e

 (
m

s)
 

Number of Point Lights 

Deferred Shading (ATI 5870) 

Deferred Lighting (ATI 5870) 

Deferred Shading (NVIDIA 480) 

Deferred Lighting (NVIDIA 480) 

Tiled (ATI 5870) 

Tiled (NVIDIA 480) 

4x MSAA Performance at 1080p 

Beyond Programmable Shading, SIGGRAPH 2010 26 

Slope ~ 5 µs / light 

Slope ~ 35 µs / light 

Tiled takes less of a hit from MSAA 

Deferred lighting even less compelling 



Conclusions 

• Deferred shading is a useful rendering tool 

– Decouples shading from visibility 

– Allows efficient user-space scheduling and culling 

• Tile-based methods win going forward 

– Fastest and most flexible 

– Enable efficient MSAA 
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Future Work 

• Hierarchical light culling 

– Straightforward but would need lots of small lights 

• Improve MSAA memory usage 

– Irregular/compressed sample storage? 

– Revisit binning pipelines? 

– Sacrifice higher resolutions for better AA? 
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Questions? 

• Full source and demo available at: 

– http://visual-computing.intel-

research.net/art/publications/deferred_rendering/ 
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Backup 
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Quad-Based Light Culling 

• Accumulate many lights per draw call 

– Render one point per light 

– Vertex shader computes quad bounds for light 

– Geometry shader expands into two triangles (quad) 

– Pixel shader reads G-buffer and evaluates lighting 
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Tile-Based Deferred Lighting? 

• Can do deferred lighting with tiling... 

– Not usually worth sacrificing the flexibility 

– Bandwidth already minimized 

– Additional resolve pass can make it slower overall 

• Exception: hardware considerations 

– SPU lighting on Playstation 3 

• Moving less data across the bus can be an overall win 
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