
1

What is Destiny
Graphics Technology and Features behind Destiny’s new rendering engine

Deferred rendering in Destiny
Our deferred rendering extensions
Transparent lighting
Particle rendering optimizations

Conclusions

2

A lot of people worked on our game, and I want to do a shout out to all their hard
work!

3

The game is in pre-alpha state
Some of these techniques are still being worked on and may change
Can’t show full set of assets as some are still being finalized

4

Bungie is entering a brave new world of Destiny – our upcoming title revealed earlier
this year

5

Afew basic facts about Destiny:
It’s a shared-world shooter.
This means a shooter that takes place in a world you share with other players.
A game where you invest in a character that you persists across all game modes.
The character you build for the co-operative story content is the same character you’ll
use in competitive multiplayer.

6

Destiny is an action game through and through, with the same great sandbox and
emergent gameplay you’d expect from Bungie.
I’m sure there will be plenty of Bungie folk at next GDC talking about Destiny’s game
mechanics etc.
Today, I am here to talk about what it takes to bring Destiny to life from the
standpoint of real-time rendering.

7

Which brings us to the recent reveal of Destiny gameplay we showed at E3… so hot
off the presses

8

INTRO video (Destiny E3)

9

Destiny is filled with mystery and adventure, where each destination telling it's own
story.
How do we build that? How do we give the artists and designers what they need to
tell these stories?
We asked ourselves that question when we first started to work on Destiny. And
unsurprisingly the answer came back… To do this thing right we need to build a whole
new engine and import pipeline and set of tools around our new engine. That was
terrifying because it meant we were leaving behind the old and comfortable tools
that we knew so well But it was also exhilarating because we had an opportunity to
build something new and amazing.

10

Let’s take a look at the pillars of Destiny design from the vantage point of a graphics
engineer (or a researcher).

Bungie is a design-driven company. Which means that all engineering features first
and foremost must serve the game. If you work on the most glorious graphics
feature, but it’ll never be experienced by the player, or, worse yet, it actually could
impede content creation or design, that is not a successful graphics feature in our
book. We start from our creative vision for the game, and the work from that to
translate it into features that will help actualize and ground this vision.

What does it take? What is the vision of Destiny?

11

So what are the pillars?

12

Here are Destiny design pillars

13

#1: People don’t like to spend a lot of time in dismal, hostile places.
Sure, there had to be some dark and dangerous places in Destiny’s world.
But overall we wanted it to be a hopeful and inviting place.

In graphics features terms this meant

Bright, contrast-full lighting, dynamic time of day, complex and detailed
shadows
Familiar environmental elements: dynamic cloth, trees, grass

14

Pillar #2: We also wanted a world that was instantly familiar, but left room for the
strange.
A world where palette, composition and mood was more important than photo-
realism. Idealized reality

In graphics terms, this meant Photo-realistic yet stylized material model
Giving artists controls that were meaningful to them. Physically based up to a point –
predictable response with artist-friendly and intuitive for controls for our techniques.
Allow artists to paint BRDFs and atmospheric models to go beyond physically based
models

15

Enabling palette and mood also means having high quality lighting – after all,
achieving artistic vision means giving them tool to express it.
And no lighting is feasible without a good solution for ambient occlusion (both global
illumination and dynamic (HDAO)
Here is a scene from our level …

16

And here is the ambient occlusion contribution by itself for the scene in previous slide
We have developed a new pipeline for fast generation of ambient occlusion for our
levels for global illumination in conjunction with NVIDIA research with Peter-Pike
Sloan (which is a topic of a whole separate new talk)

17

Also what idealized reality can be achieved without Lens flares or Custom
color grading and chromatic aberration effects

This is a large cave underneath the surface of the moon. Notice the bumpy rocks
illuminated by the light pouring in from the cave opening, and the cracks and creases
are darkened by its surroundings , and the light beams casted by the bright sun strike
through the thin atmosphere.

18

And, of course, God rays..
Imagine taking your fire-team to Earth and watch the Sunset over the ruins of the
Golden Age…

19

Next pillar is “Filled with mystery and adventure”
#3: A place that made you curious. A vast frontier of adventure.
Filled with history, waiting to be explored.

Which in graphics feature terms can be translated as … Space magic: EFFECTS!
EFFECTS! EFFECTS!

Hers another example, the whole scene is lit by the particle beam in the middle of
the room, and there are many small lights that creates interesting pools of light and
shadows. Now all this is real-time of course, so the lights can animate, and flicker
which they do in the real game which makes this static scene comes to life even
without the characters living in it. Another by-product of real-time lighting, which
was our intent all along, since the world of Destiny is persistent, and people from all
over the world will join the game from different time zones, is dynamic time of day.
Meaning players can experience different time from sun rise to sun set and at night
while playing the game. To do dynamic time of day, lighting, shadow, atmosphere,
even ambient sound all have to work in coordinated fashion.

20

“Filled with mystery and adventure”
Plentiful Atmospheric effects and high quality atmosphere rendering allowed us to
create many different mysterious places

21

“Filled with mystery and adventure”
Using Depth of field and motion blur and other screen effects punctuates the sense
of dynamism and adventure in our game (and here is example from a cinematic)

22

And the last design pillar was “A place where you can become a legend”
#4: Where every visit made a difference.
And where every victory increased your legendary status among friends and enemies.

23

In this shot you can see the three players with different progression – the
foreground character is the highest level character in this scene, and you can clearly
see that in his impressive gear set, but even other characters have very distinctive
looks that are instantly identifiable by their silhouettes which players made their own
through our customization system.

25

We needed to find a way to avoid breaking the illusion for our legends and that
meant lots and lots of Simulated cloth
Notice the cloaks, sashes, capes and other garments that are moving along with the
characters in the battle here

26

And did I mention EFFECTS?!
How could you become a legend in a sci-fi world without special abilities like Nova
bomb here which are all done with particle and screen effects in our game

27

So what does this all mean in terms of the graphics features we had to develop for
the new Destiny engine?

We spent 4 years on this engine and we were forced to be brave, and tackle quite a
few hard problems. 4 years later we have built a truly state-of the-art engine with
many cool features. It supports multiple platforms by design. It has a flexible and
efficient multi-threaded architecture that allow us map well to current generation of
console as well as whatever comes in the horizon. It has awesome character tech like
customizable gear and convincing facial animations, and many others. But our biggest
achievement, and one that we worked the hardest, and we are most proud of, is the
new art production pipeline that removes many of the shackles from our artists, and
let them focus on art creation instead of technical nitty-gritty. At the end of the day,
all this cool technology is for nothing if our artists can’t use it.

28

And more features

29

And even more features… and then I got tired of typing them individually

30

Accommodate a large spectrum of art styles
Achieve good balance between artistic style choices and realism.
Be modular and extensible where it makes sense.
NON GOALS
Be a general purpose graphics engine.
Be a showcase of anything other than the actual games we are delivering.

31

KEY AREAS TO FOCUS
Content creation process and pipeline.
Lifelike characters.
Highly interactive, dynamic worlds.
The ability to handle huge complexity.
Architecting to fully utilize the power of the next-gen hardware.

32

Which of course necessitated that we have a flexible and powerful engine.
The goals for our new Destiny Renderer were quite ambitious:
- Data-driven rendering pipeline
- Well-designed multi-threading architecture
- Support multiple platforms

- Ability to load balance across heterogeneous compute platforms:
- Ex: 6 HW threads on 360 versus 2 HW threads + 6 SPUs on PS3

versus next-gen

- Well integrated with Bungie’s object system and supports determinism
- And, of course, since we are a high paced shooter game, we need to make sure

that performance is king as we need to maintain low latency input response
(which, for 30 fps, means somewhere in the 70..90 ms range.

33

Destiny renderer was one of the key clients and driving forces behind our engine’s
multi-threading and we’re currently executing a wide variety of rendering jobs on SPU
and all CPU units

34

Let’s take a deeper look of what it means to make games tick…

35

BIG BANG THEORY VID


36

37

Rendering
Our deferred renderer had to support a flexible material model, dynamic time of day,
full-scale atmospheric effects and a powerful physically based specular
representation
Because of the scope of this presentation, I won’t get into our implementation for
time of day and atmosphere (We actually covered some of those topics in our 2009
presentation in this very course)
However, I will describe our material model and specular representation

38

Our goals for the new rendering method are, simply, to go faster and look better!

How do we do that? Well, first observation is: we want to reduce the number of
passes over object and level geometry.
Geometry is expensive (and not just in terms of memory).

39

Each geometry pass takes a significant amount of time.
Even if we look at a scene from one of our levels in Destiny, and then break down the
geometry density present here…

40

We’ll see that there is quite a bit of complexity in the scene, including higher order
tessellated objects (the characters).
Sending this dense geometry several times through the pipeline is very detrimental.

41

Or another example from our Old Russia level in the game

42

As you can see we have quite a bit of geometric density in our levels, including very
dense foliage and decorators.

At the minimum, your CPU has to marshal the objects, submit to the GPU command
buffer, and the GPU has to transform the vertices and fill the pixels.

43

Additionally ,since we are shipping on current generation consoles, we also want to
keep a small render target size, because the XBOX 360 has very severe EDRAM
limitations (10 MB)
This limits how big the buffers you can be rendering to.
When you go over those limits, you have to tile, which increases your latency, and
also indirectly increases the number of GPU geometry passes, since you will have to
render objects in both tiles.

44

We also want to simplify the behavior of the lights + materials.
Halo Reach had 5 different light types, 3 geometry types, and 3 material models, and
many combinations did not work well, or at all.
For example, cheap lights on single-pass opaque geometry would use a dark gray
diffuse color and had no specular.
On the other hand, re-render lights, widely used in cinematics, did not pick up
cubemaps.

45

Finally, we want to simplify the shaders, because simple shaders are inherently easier
to optimize + debug, and they take up less memory.

So let’s go through the various options that we have for rendering approaches

46

The first is standard ‘forward’ rendering.

This uses a single pass over the geometry, in which the shader calculates all of the
materials, lighting and shading.

It’s about as simple as it gets, conceptually.

47

The shaders on the geometry are basically directly spitting out the final lit result.

This uses the minimum number of geometry passes (1).
But, as soon as a small light gets close to a piece of geometry, you can end up wasting
a lot of time calculating it over the entire surface – so there wasted time calculating
lights.

48

Additionally, because the single shader does all of the work, you can end up paying
for the full render, light + shade cost of a pixel many times over, (because of overdraw
during rendering).

That single shader can also get pretty complicated when you start to have a large
number of light types and shading options.

49

Most engines that use this technique actually create many versions of each shader, to
optimize for different numbers and types of lights.
And, inevitably, they have to put restrictions on these numbers to keep the number of
shader permutations to a reasonable level.
As a result this approach fell out of style for many recent game engines

50

The main alternative to forward rendering, is a family of techniques known as
deferred rendering.

It’s deferred because your geometry shaders don’t directly spit out the final lit result.

Instead they spit out a description of the surface: for example: depth, color, normal,
and material properties.

Then later passes use these buffers to apply the lighting and shading.

51

In Halo : Reach we actually used a hybrid deferred rendering technique.

When it was possible, we rendered using the forward technique in the previous slide,
especially for vertex-heavy geometry such as decorators and foliage, because we only
wanted to run through those vertices once per frame.

52

However the majority of the geometry used a deferred rendering approach with two
geometry passes.

The first pass over the geometry spit out depth, normals, albedo color and a (very)
approximate material model into the g-buffers. And by very approximate, I mean it
only used 10 bits total... tiny

We then rendered global lighting, from lightmaps + inline lights, and applied shading
in a second pass over the geometry.

53

On top of that we added cheap deferred lights that made use of the approximate
material model.

The hybrid approach lets us switch between forward and semi-deferred rendering,
whichever was most suited or required for a piece of geometry.
The cheap deferred lights let us create hundreds of small point lights, for effects +
level highlights.

54

However, as I noted before, the number of permutations of light + geometry types
resulted in a massive headache for both the programmers and the artists.

And, on top of that, our deferred method required two passes over geometry, which
cost us quite a bit.

The main alternative that other games use, is:

55

What I’m calling ‘standard’ deferred rendering.

This method requires only one pass over the geometry to generate g-buffers that
describe the entire material model.

Then the lighting and shading is done in a separate stage, using the light geometry.

56

By separating the lighting and shading out of the geometry pass, this approach gains
some advantages over forward rendering.
As each shader contains only part of the rendering equation, they are individually
simpler, and easier to optimize.
And although you are paying additional pixel fill cost for the multiple passes, that is
not often the limiting factor in forward rendering.

57

And, most importantly, the cost of a light scales with the number of pixels they touch,
not with the number of objects nearby.

The main drawback with standard deferred rendering, however, is that it typically
uses extremely wide g-buffers, of up to 160 bits or more.
And these will require multiple tiles on the XBOX 360, with all of the problems that
entails.

58

To address the wide buffers, some engines started to use a method called ‘pre-pass’
deferred rendering.

They essentially record a very limited set of data in the first geometry pass – just
what is required to do lighting accumulation in the second stage.
The first-stage shaders typically calculate only the normal and specular lobe shape,
and the resulting G-buffer is a lean 64 bits, as it doesn’t have to store any color
information.

59

The second stage then accumulates lighting, but it doesn’t apply the shading yet.

The shading is applied in the final geometry pass, using the results of the first two
passes.

60

This final geometry pass is nice in that it allows custom shading per object.
On the downside, the cost is a complete second pass over all geometry in the scene
(and there are no exceptions to this, because we need some kind of surface color
information!).

(Also, because you no longer have an albedo buffer anywhere, you lose the ability to
have cheap decals. They can’t just modify that buffer.
Essentially they have to do their own lighting and blend on top of the Lit Result, like
transparent geometry.)

61

Overall, we like this approach. But, we really don’t want to pay for the full second
pass over all the geometry.

62

So on to the Destiny solution!

The Destiny deferred rendering method uses a G-buffer of 96-bits per pixel, 50%
bigger than pre-pass, but the same size as Halo Reach.

63

We stuff all of the surface and material properties we need into these 96 bits.
So in this sense it is similar to a highly-compressed standard deferred renderer.

However, we keep the separated lighting and shading passes of the pre-pass deferred
renderer.

64

The lighting is done exactly the same as in pre-pass deferred rendering, but the
shading is done as a full screen pass – every pixel on the screen uses exactly the same
material model and shading method.

From the standpoint of CPU setup cost and GPU vertex cost, full-screen shading is a
clear win over a second geometry pass.

And, if you really want the custom shading on specific pieces of geometry, like you
got with pre-pass deferred rendering, you can still choose to do so, by using a
geometry shading pass only on those objects.

65

However, with a sufficiently good material model, the vast majority of the geometry
should use the default full-screen shading.

(Also, because we have color buffers, we can support cheap decals.)

66

The key to the Destiny approach is the highly compressed and flexible G-Buffer
representation.
At 96 bits per pixel, this means we can use a resolution up to 1200 x 720 on the XBOX
360, without any tiling.

67

Here, the albedo color is just a standard 24 bit gamma-encoded color.
The normal is encoded using a 2D unwrapping of the sphere, biased to provide more
precision towards the camera.

68

Whereas standard deferred rendering may spend between 32 and 64 bits on the
material model, here the complete set of material model parameters totals 8 bits,
stored in the alpha channel of the normal. Note that we are also able to pack an 8 bit
representation for our precomputed ambient occlusion factor, which we apply to our
lighting result.

We can get away with such a small representation by using

69

A material library.

The material library stores material parameters in a table
Then the G-buffers only have to store indices into this table.

This is very expressive in practice..

Because the table is stored as a texture, the material parameters can be specified by
(technical) artists using authored curves or painted textures.

70

The specular lobe index (10 bits stored next to the normal)

Controls the shape of the specular highlight.
4 bits specify the lobe shape, which the artists paint.
And 6 bits specify the roughness variations, which are automatically calculated during
import.

So our final lookup table texture looks like this.

71

Here’s how a single line of that texture is interpreted.

The left side represents the center of the specular highlight.

And as we move to the right, it describes the falloff away from the specular highlight.

72

The automatic roughness variations are calculated to preserve total energy over the
sphere. This is the computation that is done during our content’s offline
preprocessing (aka ‘import’ step as we call it)

73

74

75

76

77

The specular tint ID controls specular color.

It is essentially a transform on the albedo color.

Although separately these parameters are totally 18 bits, we remap them using a look
up table to squeeze them into an 8 bit representation

78

So, to tell the story in pictures, we start with our G-buffers, rendered using a
geometry pass.

79

The we calculate lighting by rendering light geometry, and accumulating into diffuse
and specular light accumulation buffers.

Note that because of the way we packed the g-buffers, we only have to sample two
of the g-buffer textures to get all the parameters needed for lighting:

(depth, normal + spec lobe shape)

80

Finally we apply shading, which is essentially calculated like this:

81

82

And the finally the diffuse and specular lighting are added to get the final result.

83

So, going back to the original list of goals, here’s how each of the approaches stacks
up:

With our approach,
 Memory footprint fits in EDRAM (96 bpp)
 Single pass over geometry (especially important for decorators / foliage)
 Unified lighting + materials (no matrix of lights vs. geometry types like in
Halo)
 Allows cheap deferred decals
 Complex material appearance
 Separate lighting / shading / geometry shaders simplifies shaders

84

85

Of course, even with this flexible model, we still found the need to extend it to
support additional shading models as many of those required additional information
about lights during their shading phase.
But remember the limitations of the forward-rendered I mentioned earlier? Forward-
rendered objects would need to have separate lighting environment setup, and they
typically do not receive all regular ‘deferred’ lights. This causes forward-rendered
objects to not ‘sit well ‘ in the regular environment - NOT DESIRED AT ALL
And, of course, it increases shader permutation matrix - “special” shaders complicate
art workflows, pain to maintain for us, and frustrating to optimize

86

In our material model, specular response can be affected by diffuse (albedo) color –
this is controlled by setting specular tint to be driven from albedo color as a material
choice. This simple decision allows us to extend Destiny ‘s deferred material model to
include either additional shading models or make some of the operations cheaper to
execute.

One nice example of that is that cubemaps can modify diffuse color and specular
roughness before we output those to g-buffer

Cheap evaluation during G-buffer pass – causes cubemaps to be lit by full
lighting environment

87

Another example was integrating subsurface scattering in our engine. For
implementing subsurface scattering, we modify the diffuse lighting buffer directly in
screenspace (as a form of post-processing).

88

Here is a different shot of the same character in a simplified lighting environment and
no anisotropic for hair (just to break down the subsurface)

In this shot, we don’t apply any subsurface scattering on the lighting and you can see
the harsh shadows on the character’s face

89

Here’s the diffuse lighting buffer for that shot

90

Next, we perform a custom subsurface scattering in a screenspace pass on the diffuse
lighting accumulation buffer to compute skin diffusion.
To optimize rendering in this case, we render a skin pre-pass, which generates a
stencil mask for pixels that need to have subsurface diffusion pass enabled, as well as
output diffusion parameters
The skin prepass’ stencil ensures that we can engage Hi Stencil reject for the diffusion
pass, only causing it to work on pixels that need it.
Then we run a screenspace pass on that buffer, sampling the diffuse lighting
accumulation buffer, and blurring it using a custom subsurface diffusion blur. The
results are written out to the output diffuse lighting buffer (as a new target) and then
sent through our regular shading pipeline (including shadows application for all
shadows).

91

Which results in a softened lighting for this character. We had to come up with a
subsurface scattering model that would support alien characters such as the crow
with custom diffusion profiles that are artist-authored with variety of subsurface
control knobs.

We actually started by performing the diffusion pass for both diffuse lobe and
specular lobe accumulation buffers but we found that doing that destroyed the
specular response for the surface (we use the Kelemen specular model for these) as it
overblurred the energy response. So instead, we performed diffusion step only on
diffuse lobe accumulation buffer and kept specular response unperturbed, which is
actually more physically accurate, since the oily specular layer doesn’t get strongly
affected by subsurface response.

92

And here’s the comparison again without subsurface
And ..

93

With subsurface in the final shot

Performing our subsurface scattering on the diffuse lobe accumulation buffers
ensures that all subsurface scattered objects are not forward-lit with special lighting,
but, rather have full integrated lighting environment.

We actually enable subsurface scattering on variety of materials, including skin (as
shown in this image), but also hair (to get blond highlights showing through), and
other materials. You’ll see more examples of those effects in the near months as we
release more of our character material into the wild.

94

Another extension that we pursued was adding anisotropy support.

95

Traditionally, Anisotropy and Deferred Rendering Were Poor Friends
Extending deferred renderer to support anisotropic models can be a challenge – since
you need information about the actual light source at the point of shading which is
typically not available, most anisotropic effects become forward rendered.
Additionally, typical deferred paths don’t typically support anisotropic lighting model
in their uber-shader pass.
However, for our game, having good anisotropic materials that were integrated with
our lighting model for all characters in our sandbox game (which can be quite a large
amount of the screen) was very important, especially because we had characters with
hair that, though stylized, needed a good anisotropic response to produce believable
material

96

To sort out this issue, we built upon the previous observation that we’ve been
running with of “specular color is derived from albedo color”, and integrated
anisotropic highlight computation into G-buffer pass
Anisotropic direction was driven by the dominant light, but the overall lighting for the
anisotropic material is affected by the full lighting environment.

97

In this context, a dominant light source is either the sun or a custom dominant light
source auto-determined per character or object with anisotropic shader (such as
indoors or in cinematics). For example, for the latter case, we export a channel from a
shader (which is a data driven input for our shaders) and during cinematics Maya
export, we run a script which, based on light bounds, intensity and other parameters,
determines which light is going to be dominant for each individual object. This
parameter is then animated along with the rest of properties and exported out with
our animated data for each object.
Note that we can smoothly switch that parameter from one light to the next across
shot boundaries in all scenarios, as well as blend between different types of
dominant light sources.

So an artist just selects an anisotropic component in the shader graph (selectable for
any regular shader) – in Destiny, we support node-based shader graph editing, which
is built on custom shader component blocks, and then compiled to HLSL.

98

Here we have an example of our internal node-graph-based shader editor tool and
one of the shaders for character’s hair

99

To add anisotropic, the artist would simply drag out the ‘anisotropic highlight’
component and setup its parameters – other than that, this is a our regular deferred
shader
This is great since it means that:

No nasty shader permutations

And with this ability, the artists are also often combining anisotropic highlight
component that with subsurface scattering and other effects – all rendered within the
deferred renderer’s main pipeline

100

We can compute the full anisotropic model during our g-buffer pass (when that
particular material is known). Then we simply modify albedo color and specular
roughness that we output for each pixel to the g-buffer to include anisotropic
highlight.

For example, for hair we used a custom-modified simplified
Marshner-based model. For anisotropic we drive our
specular tint color from the diffuse color, and thus
generate an anisotropic highlight in the resulted shaded
result. What we have found is that since specular color is
driven from albedo, we do not add this response to the
specular lobe accumulation in order to preserve the
overall energy of the response (and not cause blow
outs).

101

And here’s the example from the slide before – here we used anisotropy on our
character’s, Crow, hair. What you can see here is that the result is well-integrated into
all lighting types and full shadows [Note that I punched up the brightness and
contrast to make this visible on the projector]

And most importantly results in plausible anisotropic specular response

An interesting observation that drove this integration: even though we computed
anisotropy response only for the dominant light, even in scenes when there were
multiple light sources, the result “read” correctly. Turns out people distinguish the
presence of anisotropy, but not necessarily correctly determine direction of
anisotropy for all light sources present. (Of course, we graphics folks will sense that
something isn’t quite right, but it works in this case). SHIP IT.

102

In Destiny, we have a great deal of transparent objects being rendered. Traditionally,
Bungie games have always had very strong effects rendering (see Chris Tchou's Halo
Reach Effects Tech presentation from GDC 2011) for a lot of the details about our
Halo engine’s effects pipeline). However, one of the biggest challenges with
transparent objects in a deferred renderer is getting them to be lit consistently with
the rest of the environment.

103

For Destiny, we made our explicit goal to make transparents appear to sit in the same
lighting environment as the opaque objects
This meant:

All shadowing lights cast
shadows onto transparents
Atmosphere is applied
Full Lighting environment is
applied in a consistent manner
with the opaque objects

104

High level summary of how we approach transparent lighting in Destiny: we light
transparents by placing light probes where the transparents are and, each frame,
building a low-order spherical harmonic that takes into account lights and shadows.

105

If this sounds familiar, you may have read an old presentation I’ve done at GDC
Europe 2005
(http://developer.amd.com/wordpress/media/2012/10/Tatarchuk_Irradiance_Volum
es.pdf) on Irradiance Volumes.
However,
What’s different than previous approaches we’ve used before is that instead of doing
this on the CPU, which is slow and requires a lot of caching/time-slicing to improve
performance, we do it on the GPU with a compute-like approach that’s friendly to
present-gen consoles.

106

http://developer.amd.com/wordpress/media/2012/10/Tatarchuk_Irradiance_Volumes.pdf
http://developer.amd.com/wordpress/media/2012/10/Tatarchuk_Irradiance_Volumes.pdf

Each frame:
during multithreaded processing of visible transparent render entities, the CPU builds
a list of light probe points

points are written to a fast threadsafe lock-free buffer
XYZW where each component is a 32-bit float; light probe radius is stored in
W

107

CPU sends the light probe point buffer to the GPU
we limit the number of points to 1024
this is encoded as a 64x16 rgba32f texture
double buffered to prevent stalls

108

Setup MRT with spherical harmonic light environment surfaces
three 64x16 rgba16f render targets
each render target encodes 4 SH coefficients for a color channel

render a quad to the SH surfaces for sunlight
map directional light to SH coefficients

109

sample shadow cascades to determine shadowing
sample cascades with PCF at the light probe point buffer position using a
sample radius determined by the light probe’s radius

110

for each light in the main view that is tagged as affecting transparents, render a quad
to the SH surfaces

map the light’s parameters to SH coefficients given the light probe point
buffer position

111

112

when rendering the transparent
sample the SH surfaces
evaluate the SH model given the per pixel normal
apply the lighting to the pixel color

our ambient lighting model is cheap and gets computed afterward

113

Perf:
This approach applies all visible transparent-affecting lights to all light probes each
frame. That seems wasteful, but GPUs are really good at this kind of parallelism.
Numbers on xbox360:
applying sunlight to all light probes: about 3 us per cascade
applying each light: a little under 3 us
total cost for a scene with 1024 light probes and 50 lights: ~0.15 ms

114

115

Issues:
SH basis is not a perfect match for opaque lighting

on the plus side, it’s plausible enough that you don’t notice it when the
objects is transparent anyway

116

what to do when the light probe position is off-screen but the object is partially on-
screen?

we have to include more lights than just the strictly visible set (inflate light
bounds)
we have to be careful about sampling from cascade shadow maps that are
tightly bound to the view frustum
issue gets worse the larger the object is due to our approximation of the
objects as a point– so we only light small transparent objects, or use separate
light probes for different parts of large objects

117

since the shadow factor is per object we must take a ton of samples to get a smooth
response

on the plus side, we operate on a 64x16 buffer so even with a ton of samples,
it’s not too much time

what to do when the light probe position is off-screen but the object is partially on-
screen?

we have to include more lights than just the strictly visible set (inflate light
bounds)
we have to be careful about sampling from cascade shadow maps that are
tightly bound to the view frustum
issue gets worse the larger the object is due to our approximation of the
objects as a point– so we only light small transparent objects, or use separate
light probes for different parts of large objects

118

First and foremost we are shipping a game. And that means that
All features must exist within the context of performance
In our case, we are an FPS game, which means that input latency (time from player
moving a stick on the controller to them seeing the results on the screen) has to be
very low for us to be a responsive game).

119

And speaking about performance…that neatly brings us to the subject of particles

120

Destiny is an effects-heavy game
Particles rendering take up a significant chunk of our GPU budget
Lots of overdraw
Thus particle rendering remained one of the top performance-critical part of our
rendering for the game

121

For Halo: Reach, which was also extremely effect-heavy and rich, we added a solution
for using ½ res transparents rendering for better performance
Artists could tag specific particle systems or other transparent objects as low
resolution – typically used on low frequency effects like smoke, fog, and so forth

122

At runtime, we would dynamically bucket transparents either as individual objects for
high resolution transparents, or into a small set of depth-based buckets for low
resolution transparents. We would then sort the low resolution buckets as individual
objects along with the high res transparents (we used constant sort using a min max
heap). This allowed us to minimize the cost of Hi / Low blend state on Xbox 360 as
well as the costly upres.

123

For Destiny, even that wasn’t enough… We needed a more performant solution so
that we can get all the particles that our effect artists wanted to put, along with the
corresponding overdraw, and get them to render fast on current gen platforms

124

Our solution was to create a new method which we titled…. Über-Low Res Particles
with variance-depth compositing!

Uber-low rez particles are particles that render at 1/4 x 1/4 resolution, with a special
extra variance depth map that enables them to composite seamlessly with higher
resolution depth buffers.

125

We first compute a 1/4x1/4 resolution conservative depth buffer (each pixel records
the farthest depth from the camera for the corresponding 4x4 block of original
pixels). We can use this as our depth buffer for Z-culling (and more importantly,
early-Z culling).

126

Then we set up two render targets: (assuming 1280x720 front buffer)
The color buffer records the appearance of the pixel (the composite operation to
apply it to the high res frame) at the corresponding conservative depth.
Not all of the high resolution pixels are at the conservative depth, however… so we
also record how that pixels appearance transitions towards 100% transparency as the
depth moves towards the camera.

127

The depth transition buffer records how that pixel transitions from the appearance
described by the color buffer to 100% transparency as the depth moves towards the
camera. We use this transition to properly apply the high resolution depth occlusion
when compositing.

128

The transition function looks something like this:
Where the Horizontal Axis is depth (camera on the left, increasing depth on the right)
And the Vertical Axis is fully transparent (1.0 at the top), and fully applied color buffer
(0.0 at the bottom)

Note that the range where it is transitioning is corresponds to the depth range that
the transparents at this pixel occupy.

For EXTRA CREDIT: we can use this depth description to apply true volumetric
lighting to the low rez transparents! And conveniently those are our low frequency
volumetric fog and other effects that benefit the most from that ligting

129

Really, we're trying to approximate the per pixel function: transmission(depth)

The idea is to approximate transmission(depth) as the CDF of a Gaussian, where the
Gaussian is described by the variance depth map.

130

However, VDM rules do not approximate the transmission compositing functions
well, especially when we combine vastly different variances.

However, if we restrict the variance range of each particle, and sort particles by their
depth-variance instead of pure depth, then the artifacts are fairly minimal.

131

We use the standard way to compute mean and variance from depth + depth^2, as
this method has some good blending properties (blending two different depths with
small variances results in a large variance). If we stored mean and variance
individually we would not get this. However, the mean in our modified equation
corresponds to the 'front' of the particle (essentially the depth at which it begins
applying), not the actual mean depth. In our standard depth-fade particles, this,
handily enough, corresponds to actual particle depth, as we can only fade behind the
particle.

The variance controls how quickly the particle 'fades in' over distance -- a true
Gaussian only approaches 100% at infinity, but we can clamp this behavior by
subtracting epsilon and saturating, to force it to hit 100% at a specific depth.

132

Thus, color buffer records the transparent appearance at the conservative depth
estimate

133

And here are some comparison slides.

In this screenshot we forced all particles in this scene render with high resolution
setting.

134

Hi res rendering: Notice the nice composite with the rest of the scene as highlighted
in this region here…

135

Here is another example: in this case, we rendered particles into a ¼ res target (¼ w x
¼ h) and used regular bilinear upsample to composite. In this case we notice the
artifacts across depth discontinuities..

136

And lastly, the same ¼ res rendering but this time using our new VDM technique for
compositing.. Notice that we’re able to maintain natural transitions along depth
discontinuities while still keeping uber-fast rendering cost.

137

138

OUTRO video (DESTINY E3)

139

Developing a true AAA game title is much joy, but also a bit blood, sweat and tears..
and much joy!
Staying next-gen current means many advanced graphics features

140

141

A little postcard from the Studio… (in-development shot of a character in one of our
levels made by our character artist, Scott Shepherd)

142

143

144

Questions?

145

146

147

Q&A

148

