Skip to content
上一篇完成了specular的环境光渲染。当然,在实际效果中,diffuse也是不可缺少的。在这套基于物理的环境光渲染中,也必须要有diffuse才完整。 Irradiance map GPU Gems 2第10章详细描述了如何通过卷积cube map,得到irradiance map,并用于diffuse的环境光渲染。其基本原理就是,可以把cube map当作一个拥有无数方向光源的物体。场景中的任何一个点,都会受到cube map里所有方向光源的照射,累积起来得到最终结果。 从最基本的光照原理可以得出,对于一个点,只有normal方向的那个半球面会对这个点有影响。而且影响程度按照n dot l的大小来分布。各向同性的纯diffuse情况下,shading和视点方向无关。所以,这里可以用Spherical Harmonic ...
上一篇把BRDF换成了更为常见的blinn-phong,推出了在上面进行importance sampling的公式,以及如何把结果存到一张查找表LUT上。更进一步的做法是把这张LUT拟合成一个曲面,这样就可以在shader中直接计算,省去一次纹理采样。Black Ops II也做了拟合,但它的方法是把F=0和F=1的曲线用F=0.04来表达,最终用一个很粗糙的插值来得到整个曲面。这里我打算用暴力的方法直接拟合整个曲面。 曲线拟合 LUT有两个通道,x表达scale,y表达bias。对于这两个通道,可以表达为f(n_dot_v, roughness)这样的一个函数。原始的LUT大小为128x128,实验中发现LUT本身很平滑,即使缩小到16x16,也不容易从最终渲染结果上看区别。所以这里我们选择16x16的大小作为 ...
上一篇重现了UE4的环境BRDF渲染框架。本篇会把GGX换成更常见的Blinn-Phong BRDF。在这个过程中,整个框架仍然保持不变,从importance sampling得到的ground truth开始,逐步推出用prefiltered环境光和预计算的LUT完成基于物理的环境光渲染。只是把BRDF换掉。 采样的细节 上一篇我只是简略地说了ground truth来自于采样1024次,但并没有给出如何计算采样点。这里会有具体的做法。 生成2D空间的随机点[math]\xi_{\theta}[/math]和[math]\xi_{\phi}[/math] 根据BRDF的概率密度函数pdf,从[math]\xi_{\theta}[/math]和[math]\xi_{\phi}[/math]计算importance sampling需要的球面坐标系[math]s_{\theta}[/math]和[math]s_{\phi}[/math] ...
本系列源自于对Real Shading in Unreal Engine 4和Getting More Physical in Call of Duty: Black Ops II的理解。打算按照以前游戏中基于物理的渲染的思路,介绍一下如何在游戏这样的实时应用中使用基于物理的环境光。 回顾 在游戏中基于物理的渲染中列出了渲染方程的简化版,这是整个基于物理的体系的源头。 [math]L_0(\mathbf{v})=\int_{\Omega} \rho(\mathbf{l},\mathbf{v}) \otimes {L}_{i}(\mathbf{l}) (\mathbf{n} \cdot \mathbf{l}) d \omega_{i}[/math] 其中,根据microfacet理论,BRDF可以表达成: [math]\rho(\mathbf{l}, \mathbf{v})=\frac{F(\mathbf{l},\mathbf{h})G(\mathbf{l},\mathbf{v},\mathbf{h})D(\mathbf{h})}{4(\m ...
KlayGE 4.5刚刚发布,KlayGE 4.6就进入了开发阶段。这里公开一下我对KlayGE 4.6的一些规划。和以前一样,欢迎有兴趣、有时间加入KlayGE 4.6开发阵营的朋友们继续参加。 KlayGE 4.6将会支持更复杂的场景,以及更好的移动平台支持。另外,从4.6开始,发布的Windows二进制文件将采用x64,并且不在采用v120_xp等支持WinXP的toolset。如果需要x86版或支持XP的版本,请自行从源代码编译出来。 时间线 这里列出几个重要的时间点,以供进度参考。 2014年11月31日,feature complete:所有功能都已经完成,没完成的推迟到下一个版本。 2014年12月15日,code complete:完成所有代码,除非特殊情况,否则不能在改变接口。 2014年12月31 ...
在2010年字体生成工具经历了一次提速,通过只填充边缘、SSE2、Danielsson distance transform后,速度已经较快,而且很难再提升了。前不久一个朋友周赫发现了一篇paper Anti-aliased Euclidean distance transform[1]。该文提供了一个新的生成距离场的算法,只需要较小的灰度图,就能估算出叫高精度的距离场,该算法已经用于freetype-gl。这给KlayGE的字体生成工具提供了一个再次大幅度提速的机会,所以在KlayGE 4.5中,我尝试实现了这个算法。 原算法回顾 原算法的完整描述可以在这里找到。总的来说,可以把距离场的生成概括成这几个步骤。 通过freetype生成光栅化的4096x4096的灰度图,转成二值位图。 轮廓提取,得到4096x4096的轮 ...
上一篇讲了低端硬件上如何运行deferred框架。本文是这系列的最后一篇,将会介绍KlayGE 4.5中对虚拟现实设备Oculus Rift的支持。 Oculus Rift是Oculus VR公司推出的虚拟现实头盔。它几乎是市面上同等设备中价格最便宜同时效果最好的一款VR头盔。在硬件上,它分为输入和输出两个系统。输入系统是个9轴sensor(陀螺仪、罗盘、加速度计),采样率高达1000Hz。能精确提供头盔的朝向。第二代设备甚至能提供局部移动信息。输出系统是一个7寸的屏幕,因为和眼睛的距离很近,可以覆盖整个视域。 Oculus同时还提供了个Oculus SDK,可以通过它得到sensor的输入,和输出的参数。但渲染之后的后处理等,需要程序自己处理。 输入系统 KlayGE中 ...
[zh] 又到了KlayGE的发布周期。今天,KlayGE 4.5正式发布了!这个版本除了KlayGE传统上在图形方面的发展之外,在工程方面和移动平台上也有较大的改进。这个趋势还会持续下去。在这个版本的开发中,多个大的组件是由团队成员完成的,同时也有很多朋友提供了宝贵意见和bug报告,在此表示感谢。KlayGE 4.5的主要更新如下: 新子项目 DXBC2GLSL。组员林胜华完成的一个库和工具,可以把D3D compiler生成的字节码转换成OpenGL 2.0-4.4和OpenGL ES 2.0-3.1的GLSL。 引擎方面的改进 G-Buffer中更好的normal表达。 Compute shader的TBDR实现。把4.4中基于PS的light indexed deferred进一步发展成compute shader的实现,一次处理1024 ...
上一篇探讨了G-Buffer里如何紧凑并高质量地存储normal。长期以来,deferred一直被认为只能用于高端显卡,低端卡由于功能和带宽的限制,不适合使用deferred。虽然现今移动设备大行其道,但所有移动设备和桌面相比,都只能算低端。所以OpenGL ES上也一直都被forward渲染占领。一个引擎维护两套流水线是非常麻烦的事情,尤其对于KlayGE这样的开源轻量引擎。所以,如果能在低端设备上也能用同一条deferred流水线,能给维护和扩展提供巨大的方便。 经过一定的改进,deferred流水线已经可以在中上等级的OpenGL ES 2设备和D3D11 feature level 9.3设备上跑了。这样的硬件涵盖了NV GeforceFX 6000以上(2004年)、ATI Radeon X1000以上(2005年) ...
上一篇讲了基于CS的TBDR,目前KlayGE中一共有三条deferred的code path,传统的DR,基于PS的TBDR和基于CS的TBDR。但不论是什么样的deferred,都不可避免需要在G-Buffer上存normal。对G-Buffer优化的重要议题之一也是如何尽量紧凑地存储normal。 原先的做法 在KlayGE 4.0之前,G-Buffer是2张64bpp的纹理,normal用spheremap transform的方式存在2个fp16的通道里,共32bit。这样的G-Buffer占用空间相当大。在4.0的时候,G-Buffer改成了2张32bpp的纹理,normal用best fit的方法存在3个8bit通道里,共24bit。Best fit的有效位数是23bit,两个fp16的总有效位数是22bit,所以这么做反而有助于质量提升。 Normal压缩 Normal的压缩其实应该分为两 ...